Заметим, что решающую роль на поведение функции (ее возрастание или убывание) всегда оказывает знак при . Тогда функция убывает на промежутке , а возрастает на . Значит единственное решение достигается тогда и только тогда, когда .
Получили уравнение:
Итого при исходное уравнение имеет единственное решение.
Второй :
Построим график этого уравнения в координатах :
(см. прикрепленный файл)
Тогда ответом будет .
Третий :
Знаем, что при :
Тогда единственное решение возможно, только если .
Решим неравенства: (1) x > 35 (2) x ≤ 99 (3) x > 8 (4) x ≥ 10 (5) x > 5
Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
(см. объяснение)
Объяснение:
Первый :
Рассмотрим функцию
.
Тогда уравнение примет вид
.
Заметим, что решающую роль на поведение функции (ее возрастание или убывание) всегда оказывает знак при
. Тогда функция убывает на промежутке
, а возрастает на
. Значит единственное решение достигается тогда и только тогда, когда
.
Получили уравнение:
Итого при
исходное уравнение имеет единственное решение.
Второй :
Построим график этого уравнения в координатах
:
(см. прикрепленный файл)
Тогда ответом будет
.
Третий :
Знаем, что при
:
Тогда единственное решение возможно, только если
.
Получили уравнение:
Так как
.
Задание выполнено!