1) Область определения функции sinx, а также sin2x это множество R всех действительных чисел. Но в нашем случае sin2x стоит в знаменателе, а на 0 делить нельзя. Значит из множества R надо исключить все значения 2x при которых sin2x =0, а это значения аргумента 2x = 180n n - все целые числа положительные и отрицательные, включая 0. Таким образом, область определения функции это множество R за исключением значений x = 90n Примечание : значения x даны в градусах. Чтобы перевести в pi, помните, что pi=180° 2) Решение аналогично предыдущей задаче. Разница в том, что cosx принимает значение 0 при x = 90+180n, а cosx/2 принимает значения 0 при x=45+90n. Значит область определения функции это множество R за исключением значений x = 45+90n Извини, Дима, за предыдущие ответы. Торопился на совещание.
Найдем вершины каждой из них.
из формулы ах²+bx+c
B(x; y)
x(B) = -b / 2a
1) у = х² - 2х + 7
х(В) = 2/2 = 1
у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6
В(1; 6) - вершина
=> у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5
х(В) = 7/2 = 3,5
у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25
В(3,5; 20,25) - вершина
=> у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5