Первому герою можно дать 6 вариантов оружия. Далее второму при каждом из этих 6-ти вариантов первого можно дать 5 вариантов (т.к. один из видов оружия занят первым), значит, на первых двух у нас есть 6*5 вариантов. Далее абсолютно аналогично: при каждом из этих 6*5 мы можем дать третьему 4 варианта (два заняты), получаем 6*5*4 вариантов; при каждом из этих 6*5*4 мы можем дать четвёртому 3 варианта (три заняты), получаем 6*5*4*3 вариантов; при каждом из этих 6*5*4*3 мы можем дать пятому 2 варианта (четыре заняты), получаем 6*5*4*3*2 вариантов; и наконец последнему при каждом из 6*5*4*3*2 вариантов не оставят выбора - у него 1 вариант (оставшееся оружие) Значит, всего 6*5*4*3*2*1 = 720 вариантов (Это задача комбинаторная; здесь вычислялось количество перестановок по формуле n! ; n! = n*(n-1)*(n-2)*...*1, т.е. здесь было 6! = 720)
Объяснение:
2
S=∫(x²+1)dx=
0
2
=((x³/3)+x)=(2³/3)+2=(8/3)+2=(2 2/3)+2=4 2/3 кв.ед.
0