1) 2/a -7/b =2b-7a /ab 2)с/ab + a / cd=c^2d+a^2b / abcd 3)b/a ^ 2 - a/b ^ 2 =b^3-a^3 / a^2b^2 4)5/a+ 3a - 5 / a + 1=5(a+1)+a(3a-5) a(a+1)=5a+5+3a^2-5 / a(a+1)=5a+3a^2 / a(a+1) здесь вопрос по поводу самого условия 3a и 1 отдельно от дроби или включены в знаменатель? я решала под знаменателем. если отдельно, на 5)m + n / m - n + m / m - n=m+n+m /m-n=2m+n /m+nпиши, решу по другому. 6)p / q - p / p /q =p/q-p * q/p=q/ q-p 7)1 / y ^ 3 + 1 - y ^ 2 / y ^ 5= 8) 1- xz / xyz - 1 - ax / axyz =(1-xz)y-(1-ax)z / axyz=y-xyz-z+axz / axyz
9)1 + b / abc + 1 - a / a ^ c =здесь что-то с условием не так. a в степени с или какой-то все-таки другой знаменатель?
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
4*1/х-2-2*2*1/х-2-8>0, x перечеркнутое тире 2
4/х-2-4/х-2-8>0
-8>0
Твердження хибне