
- это правая полуокружность от окружности
с центром в точке (0,0) и R=2 , выразим
, причём для 1-ой четверти знак перед корнем (+) , а для 4-ой четверти знак (-) .
- это парабола , ветви которой направлены вправо, вершина в точке (0,0) . Выразим y:
, причём знак (+) перед корнем для 1-ой четверти, а знак (-) для 4-ой четверти.
Область симметричная относительно оси ОХ. Поэтому можно подсчитать площадь одной половины, а затем удвоить её.
Найдём точки пересечения окружности и параболы.


![Q=\int \sqrt{4-x^2}\, dx\\\\Q=\int \frac{4-x^2}{\sqrt{4-x^2}}\, dx=4\int \frac{dx}{\sqrt{4-x^2}}-\int \frac{x\, \cdot \, x\, dx}{\sqrt{4-x^2}}=\Big[\; u=x\; ,\; du=dx\; ,\\\\dv=\frac{x\, dx}{\sqrt{4-x^2}}\; ,\; v=-\frac{1}{2}\cdot 2\sqrt{4-x^2}=-\sqrt{4-x^2}\; ,\; \int u\, dv=uv-\int v\, du\; \Big]=\\\\=4\cdot arcsin\frac{x}{2}-\Big(-x\sqrt{4-x^2}+\int \sqrt{4-x^2}\, dx\Big)=\\\\=4\, arcsin\frac{x}{2}+x\sqrt{4-x^2}-Q\; \Rightarrow \; \; Q=4\, arcsin\frac{x}{2}+x\sqrt{4-x^2}-Q\; ,](/tpl/images/1075/2260/84be5.png)



- это правая полуокружность от окружности
с центром в точке (0,0) и R=2 , выразим
, причём для 1-ой четверти знак перед корнем (+) , а для 4-ой четверти знак (-) .
- это парабола , ветви которой направлены вправо, вершина в точке (0,0) . Выразим y:
, причём знак (+) перед корнем для 1-ой четверти, а знак (-) для 4-ой четверти.
Область симметричная относительно оси ОХ. Поэтому можно подсчитать площадь одной половины, а затем удвоить её.
Найдём точки пересечения окружности и параболы.


![Q=\int \sqrt{4-x^2}\, dx\\\\Q=\int \frac{4-x^2}{\sqrt{4-x^2}}\, dx=4\int \frac{dx}{\sqrt{4-x^2}}-\int \frac{x\, \cdot \, x\, dx}{\sqrt{4-x^2}}=\Big[\; u=x\; ,\; du=dx\; ,\\\\dv=\frac{x\, dx}{\sqrt{4-x^2}}\; ,\; v=-\frac{1}{2}\cdot 2\sqrt{4-x^2}=-\sqrt{4-x^2}\; ,\; \int u\, dv=uv-\int v\, du\; \Big]=\\\\=4\cdot arcsin\frac{x}{2}-\Big(-x\sqrt{4-x^2}+\int \sqrt{4-x^2}\, dx\Big)=\\\\=4\, arcsin\frac{x}{2}+x\sqrt{4-x^2}-Q\; \Rightarrow \; \; Q=4\, arcsin\frac{x}{2}+x\sqrt{4-x^2}-Q\; ,](/tpl/images/1075/2260/84be5.png)



Объяснение:
1) КС⊥ СО, т.е. КС ⊥СВ
ВР ⊥ВО, т.е. ВР ⊥СВ
По признаку параллельности прямых, если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны». Следовательно, КС ║ВР
2) ∠1 и ∠2 - это накрест лежащие углы, т.к. КС ║ВР, то и
∠1 = ∠2.
3) ΔСКВ и ΔСРВ - прямоугольные. ∠1 = ∠2. СВ - общая сторона (катет)
ΔСКВ = ΔСРВ по катету и противолежащему острому углу. Следовательно,
КВ = СР, ч.т.д.