М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лиана247
лиана247
07.08.2020 08:47 •  Алгебра

решить эти задания, желательно с объяснением заранее


решить эти задания, желательно с объяснением заранее

👇
Ответ:
anisimanis
anisimanis
07.08.2020

Отметьте лучшим решением и поставьте сердечко


решить эти задания, желательно с объяснением заранее
4,5(5 оценок)
Ответ:
алик143
алик143
07.08.2020

Начнем с первого пункта.

4^{\sqrt{7}+2 } * 4^{2-\sqrt{7} }

Так как основания одинаковы (равны 4), мы можем упростить по формуле:

a^{m} * a^{n} = a^{m+n}, где (в нашем случае) a = 4, m = \sqrt{7}+2, n = 2-\sqrt{7}

Подставляем.

4^{\sqrt{7}+2+2-\sqrt{7} } = 4^{4}, что равно 256.

Пункт второй.

49^{x+1} \leq (\frac{1}{7}) ^{2}

В данном случае нужно самому привести к общему основанию.

49 - это 7^{2} , а \frac{1}{7} - это 7^{-1}.

Значит,

(7^{2} )^{x+1} \leq (7^{-1} )^{x}

7^{2x+2} \leq 7^{-x}

А вот тут, так как это неравенство, где основания уже одинаковы, т.е. равны 7, мы можем убрать основания, оставив только степени. Опять же, это можно делать только если основания одинаковы.

2x+x\leq -2\\3x\leq -2\\x\leq -\frac{2}{3}

4,7(18 оценок)
Открыть все ответы
Ответ:
Lyn8023
Lyn8023
07.08.2020
Х-в день 1,время 1/х
у-в день 2,время 1/у
х+у-в день вместе,время 1/(х+у)
1/(х+у)=18⇒х+у=1/18⇒х=1/18-у
2/3х+1/3у=40⇒2у+х=120ху
2у+1/18-у=120у(1/18-у)
18у+1=120у(1-18у)
18у+1-120у+2160у²=0
2160у²-102у+1=0
D=10404-8640=1764
√D=42
y1=(102-42)/4320=60/4320 =1/72-в день 2,тогда работая одна выполнит за 1:1/72=72 дня
х1=1/18-1/72=1/24 в день 1,тогда работая 1 выполнит 1:1/24=24 дня
у2=(102+42)/4320=144/4320=1/30 в день 2,тогда работая одна выполнит за 1:1/30=30 дней 
х2=1/18-1/30=1/45в день 1,тогда работая 1 выполнит 1:1/45=45 дней
4,8(66 оценок)
Ответ:
asdfdsf01oziqid
asdfdsf01oziqid
07.08.2020

Заметим ,что наименьшие значения  функций:

2^(x-3) +4>4

5*|tg(x)|+3*|ctg(x)|>=2√15      (из соображений  полного квадрата  и положительности каждого из членов |tg(x)|*|ctg(x)|=1)

Рассмотрим случай когда : a<-2√15

В этом случае  числитель будет  отрицателен при любом  x:

a-(2^(x-3) +4)<0

Знаменатель  же ,будет положителен не всегда, тк  при  каком нибудь x обязательно  найдется значение    5*|tg(x)|+3*|ctg(x)|>a ,тк  оно  имеет область значений от 2√15  до бесконечности) .  То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15  будут существовать решения неравенства.

Рассмотрим случай когда: a>4

Тут  ситуация иная:

Знаменатель тут  всегда положителен,а вот  числитель не  всегда отрицателен,то есть решения так же будут существовать .

Наконец рассмотрим случай когда:

     -2√15<=a<=4

В  этом случае числитель всегда  отрицателен (при  любом x), а  знаменатель же  наоборот будет неотрицателен. Таким образом только на  этом интервале неравенство не будет иметь решения не для какого x. Тк  отношение числителя и знаменателя всегда будет отрицательным. P.S  Не у  кого тут нет вопросов  почему  строгое неравенство  для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему  же строгое и для  4,  а дело  все в том ,что: 2^(x-3) +4≠4  , а только стремится к нему при  стремлении x к бесконечности,поэтому опасаться за равенство нулю  числителя не  стоит.

Таким образом

ответ:  a∈[-2√15;4]

4,4(58 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ