М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Сакура2034
Сакура2034
21.01.2023 02:35 •  Алгебра

Расстояние между пристанями а и в по течению реки равно 84 км. из пристани в вниз по течению отправился плот. одновременно из пристани а вдогонку за плотом отправился катер,собственная скорость 21 км/ч. через сколько часов катер нагонит плот,если известно, что скорость течения реки равна 3 км/ч

👇
Ответ:
bellalove200
bellalove200
21.01.2023
1)21+3-3=21-скорость сближения
2)84/21=4ч
4,8(20 оценок)
Открыть все ответы
Ответ:
evelinastepenko
evelinastepenko
21.01.2023
По определению
|x|= \left \{ {{x, x \geq 0} \atop {-x,x
Поэтому
|x-2|= \left \{ {{x-2,x-2 \geq 0} \atop {-x+2,x-2
т.е
слева от точки 2 подмодульное                     справа от точки 2 подмодульное
выражение берется со знаком "-"                 выражение  со знаком "+"
                     -                                                                     +
--------------------------------------------------------(2)------------------
Аналогично
|x-4|= \left \{ {{x-4,x-4 \geq 0} \atop {-x+4,x-4
т.е
слева от точки 4 подмодульное                                справа от точки 4 подмодульное
выражение берется со знаком "-"                            выражение со знаком "+"
------------------------------------------------------------------(4)------------------
                             -                                                                        +
Изобразим на одной координатной прямой. Причем знаки первого подмодульного выражения будем изображать наверху, знаки второго - внизу
                             -                              +                            +
--------------------------------------(2)--------------------(4)--------------
                             -                               -                            +
Раскрываем модули на (-∞;2].
 Оба подмодульных выражения раскрываем с противоположным знаком:   |x-2|=-(x-2)=-х+2 ;   |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
-x+2-x+4=3
-2х+6=3
-2х=-3
х=3/2
х=1,5
1,5 ∈(-∞;2]

Раскрываем модули на (-2;4]:    |x-2|=x-2 ;   |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
x-2-x+4=3
2=3 -неверное равенство
Уравнение не имеет корней

Раскрываем модули на (4;+∞).
 Оба подмодульных выражения раскрываем не меняют выражения: 
 |x-2|=x-2 ;   |x-4|=x-4
Уравнение принимает вид:
x-2+x-4=3
2х-6=3
2х=9
х=9/2
х=4,5
4,5 ∈(4;+∞)
ответ. 1,5 ;  4,5
Остальные примеры решаются аналогично.
2)
       -                +                    +
 -----------(-2)-------------(3)------------
       +                +                  -
на (-∞;-2]   уравнение принимает вид:  -х+2-3(3-х)+х=0      или    3х=7    х= 7/3 - не принадлежит промежутку (-∞;-2), не является корнем уравнения
на (2;3]   уравнение принимает вид: х-2-3(3-х)+х=0        или    5х=11   или      х=2,2
2,2∈ (2;3] , значит  х=2,2 - корень уравнения
на (3;+∞)  уравнение принимает вид    х-2+3(3-х)+х=0    или    х=7
7∈(3;+∞), значит х=7  является корнем уравнения
ответ. 2,2 ; 7
3)
            -                          +                          +
------------------(1)--------------------(4)----------------
           +                          +                          -

на (-∞;1]  уравнение принимает вид:    4-х-2х+2=5-2х    или    х=1
1∈(-∞;1] , значит х=1 - корень уравнения.
на (1;4) уравнение принимает вид:    4-х+2х-2=5-2х          или    3х=3      или    х=1
1∉(1;4) , на данном промежутке уравнение не имеет корней
на (4;+∞)  уравнение принимает вид:    -4+х+2х-2=5-2х      или    5х=11  или  х=2,2
2,2∉(4;+∞)  уравнение не имеет корней на данном промежутке
ответ. х=1
5)
|x|                  -                        -              +                    +
|3x+2|          -                        +              +                  +
|2x-1|           -                        -                -                  +
             ------------------(-2/3)-------(0)------------(1/2)---------------
(-∞;-2/3]      - x -3x - 2 - 2x +1 = 5      или  -6х=6      или    х=-1
-1∈(-∞;-2/3]   х=-1 - корень уравнения
(-2/3;0]        х - 3х - 2 - 2х + 1 = 5      или    -4х=6      или     х=-3/2
-3/2∉(-2/3;0]    х=-1,5 не является корнем уравнения
(0;1/2]        x+3x+2-2x+1=5        или      2х=2    или    х=1
1∉(0;1/2]    х=1 не является корнем уравнения
(1/2;+∞)      х+3х+2+2х-1=5      или    6х=4    х=  2/3
2/3∈(1/2;+∞)
ответ. х=-1 ; х=2/3
4,6(61 оценок)
Ответ:
Xzxzxzxzxzzxzxz
Xzxzxzxzxzzxzxz
21.01.2023
Уравнение четвёртой степени имеет вид:
   \alpha _0x^4+ \alpha _1x^3+ \alpha _2x^2+ \alpha _3x+ \alpha _4=0
Разделим обе части на коэффициент \alpha _0, получаем
             x^4+ \alpha x^3+ bx^2+cx+d=0
где a, b, c, d –  произвольные вещественные числа.

Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть
   x=i- \frac{ \alpha }{4}, где \alpha - коэффициент перед х^3 и 4 - произвольные вещественные числа

В нашем случае такое уравнение: x^4+6x^3-21x^2+78x-16=0
Заменим x=i- \frac{6}{4} =i-1.5, получаем
 (i-1.5)^4+6(i-1.5)^3-21(i-1.5)^2+78(i-1.5)-16=0\\ i^4-6i^3+13.5i^2-13.5i+5.0625+6i^3-27i^2+40.5i-20.25-21i^2+\\+63i-47.25+78i-117-16=0\\ i^4-34.5i^2+168i-195.4375=0

Получаем кубическое уравнение: 2s^3-ps^2-2rs+rp- \frac{q^2}{4}=0
В нашем случае: p=-34.5;\,\,\,\,q=168;\,\,\,\,r=-195.4375
Подставляем и получаем уравнение
  2s^3+34.5s^2+2\cdot195.4375s+34.5\cdot195.4375- \frac{168^2}{4}=0\\ 64s^3-1104s^2+12508s-10029=0
Разложим одночлены в сумму нескольких
   64s^3-48s^2+1152s^2-864s+13372s-10029=0
Выносим общий множитель
16s^2(4s-3)+288s(4s-3)+3343(4s-3)=0\\ (4s-3)(16s^2+288s+3343)=0\\ s=0.75
Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0

Таким образом для решения уравнения остается квадратное уравнение
i^2+i \sqrt{2s-p} - \frac{q}{2\sqrt{2s-p}}+s=0
Заменяем
  i^2+i\sqrt{2\cdot0.75+34.5}- \frac{168}{\sqrt{2\cdot0.75+34.5}} +0.75=0\\ 4i^2+24i-53=0\\ D=b^2-4ac=576+848=1424\\ i= \dfrac{-6\pm \sqrt{89} }{2}

Возвращаемся к замене
  x=i-1.5=\dfrac{-6\pm \sqrt{89} }{2}- \dfrac{3}{2} =\dfrac{-9\pm \sqrt{89} }{2}

Окончательный ответ: \dfrac{-9\pm \sqrt{89} }{2}.
4,6(12 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ