Дошёл до следующего: a + b = 0; a = -b; f(0)=f(-b)*f(b) Но не могу понять, какое значеие будет у этого произведения (1 или -1). Оттуда отношение уже не сложно вывести.
1 y=|4/x -1| Строим у=4/х гипербола в 1 и 3 ч х -4 -2 -1 1 2 4 у -1 -2 -4 4 2 1 Сдвигаем ось ох на 1 вверх Оставляем все что выше оси ох,а то что ниже отображаем наверх 2 |y=|2^x-2| Строим у=2^x x -1 0 1 2 y 1/2 1 2 4 Сдвигаем ось ох на 2 вверх Оставляем все что выше оси ох,а то что ниже отображаем наверх 3 y=sinx/|sinx| 1)sinx<0⇒x∈(π+2πn;2π+2πn,n∈z) y=sinx/(-sinx)=-1 2)sinx>0⇒x∈(2πn;π+2πn,n∈z) y=siinx/sinx=1 4 y=cosx/|cosx| 1)cosx<0⇒x∈(π/2+2πn;3π/2+2πn,n∈z) y=cosx/(-cosx)=-1 2)cosx>0⇒x∈(-π/2+2πn;π/2+2πn,n∈z
Пусть расстояние между А и В (s) км, скорость1 первого (х) км/час --ее нужно найти, скорость2 (2х/3) км/час --она в 3/2 раза меньше скорости1, скорость3 ((2х/3)-6) км/час --она на 6 км/час меньше скорости2 время в пути первого: (s/х) час время в пути второго: (s/(2х/3))=(3s)/(2x) час время в пути третьего: (s)/((2х/3)-6)=(3s)/(2x-18) час 10 минут = (1/6) часа 15 минут = (1/4) часа получим систему уравнений: 3s/(2х) = (s/х) + (1/6) второй приехал позже --> время больше 3s/(2х-18) = 3s/(2х) + (1/4) третий приехал позже второго
3s/(2х) = (6s+х)/(6x) 3s/(2х-18) = (6s+х)/(4x)
9sх = x(6s+х) 6sх = (x-9)(6s+х)
3sx = x² 54s+9x = x²
9x = (3x-54)s ---> s = 3x/(x-18) x² = 3x * 3x/(x-18) x-18 = 9 x = 27 (км/час) скорость первого велосипедиста s = 3*27/9 = 9 (км)
ПРОВЕРКА: скорость второго велосипедиста: 27:1.5 = 27*2/3 = 18 км/час его (второго) время в пути: 9:18 = 1/2 часа = 30 минут скорость третьего велосипедиста: 18-6 = 12 км/час его (третьего) время в пути: 9:12 = 3/4 часа = 45 минут время первого велосипедиста в пути: 9:27 = 1/3 часа = 20 минут второй приехал на 30-20=10 минут позже первого))) второй приехал на 30-45=-15 минут раньше третьего)))
Пусть
, тогда по свойству функции будет верно, что
.
Поскольку по условию
, то получаем, что
.
Отсюда получаем
.