Объяснение:
1)=36-12х+х^2-12х+18+2х^2-3х=54-27х+3х^2
2)=5х+10-3х^2-6х-7х-14+х^2+2х=-6х-4-2х^2
3)=4х+12+3х^2+9х-5х-15+2х^2+6х=
14х-3+5х^2
Уравнение прямой, отсекающей от первого координатного угла треугольник, имеет вид y=kx+b . Этот треугольник прямоугольный и его площадь равна половине произведения катетов.
Так как точка А(1;2) принадлежит этой прямой,то подставив координаты точки А(1;2) в это уравнение получим
Уравнение прямой теперь будет выглядеть так: .
Найдём точки пересечения этой прямой с осями координат:
Длины отрезков, отсекаемых прямой y=kx+2-k на координатных осях, равны (2-k) на оси ОУ и (k-2)/k на оси ОХ. Эти отрезки и есть катеты прямоугольного треугольника. Вычислим его площадь:
Найдём минимум это функции S(k).
Точка минимума: , так как при переходе через k= -2 производная меняет знак с минуса на плюс.
При k= -2 уравнение искомой прямой будет
ответ: k= -2 .
Уравнение прямой, отсекающей от первого координатного угла треугольник, имеет вид y=kx+b . Этот треугольник прямоугольный и его площадь равна половине произведения катетов.
Так как точка А(1;2) принадлежит этой прямой,то подставив координаты точки А(1;2) в это уравнение получим
Уравнение прямой теперь будет выглядеть так: .
Найдём точки пересечения этой прямой с осями координат:
Длины отрезков, отсекаемых прямой y=kx+2-k на координатных осях, равны (2-k) на оси ОУ и (k-2)/k на оси ОХ. Эти отрезки и есть катеты прямоугольного треугольника. Вычислим его площадь:
Найдём минимум это функции S(k).
Точка минимума: , так как при переходе через k= -2 производная меняет знак с минуса на плюс.
При k= -2 уравнение искомой прямой будет
ответ: k= -2 .
решение на фотографии...