Значение производной в точке касания равно угловому коэффициенту касательной, в данном случай двум. Значит абсцисса точки касания находится из уравнения:
Т.о. имеются две точки, в которых касательная к графику нашей функции имеет угловой коэффициент, равный 2. Вычислим значения функции в этих точках и проверим, удовлетворяют ли они уравнению касательной:
при х = -1 при
Проверим удовлетворяет ли уравнению касательной у=2х точка (-1;-2): -2 = 2*(-1) -2 = -2 ( ДА)
Проверим удовлетворяет ли уравнению касательной у=2х точка : (НЕТ)
-4(2,5а-1,5)+6,5а-10=-10а+6+6,5а-10=-3,5а-4, при а=-2/9:
-3,5*(-2/9)-4=-7/2*(-2/9)-4=7*1/9-4=7/9-4=(7-36)/9=-29/9=-3_2/9.