1.
6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x
5sin^2x-3sinx*cosx-2cos^2x=0 /:cos^2x≠0
5tg^2x-3tgx-2=0
замена tgx=t
5t^2-3t-2=0
t=1
t=-2/5
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-2/5
x=-arctg(2/5)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(2/5)+pik, k∈Z
2.
5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x
2sin^2x+3sinx*cosx-5cos^2x=0 /:cos^2x≠0
2tg^2x+3tgx-5=0
замена tgx=t
2t^2+3t-5=0
t=1
t=-5/2
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-5/2
x=-arctg(5/2)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(5/2)+pik, k∈Z
ну в место 51 поставь 52
Объяснение:
Обозначим:
а - длина прямоугольника;
в - ширина прямоугольника
Согласно условия задачи,
2*(а+в)=40
а*в=51
Решим получившуюся систему уравнений, для этого из второго уравнения найдём значение (а) и подставим её значение в первое уравнение:
а=51/в
2*(51/в+в)=40
(102+2в²)/в=80
102+2в²=40в
2в²-40в+102=0 сократим на 2
в²-20в+51=0
в1,2=(20+-D/2*1
D=√(20²-4*1*51)=√(400-204)=√196=14
в1,2=(20+-14)/2
в1=(20+14)/2
в1=17 - не соответствует условию, т.к. для ширины большая величина
в2=(20-14)/2
в2=3 (см - ширина прямоугольника)
а=51/3
а=17 (см - длина прямоугольника)
ответ: в прямоугольнике длина - 17см; ширина 3см
x={-π/2; -2π/3}
Объяснение:
Используя формулы приведения
cos(x-π)=-cosx
sin(x+π/2)=cosx
2sin²(x+π/2)=cos(x-π)
2cos²x=-cosx
2cos²x+cosx=0
cosx(2cosx+1)=0
1) cosx=0
x=π/2+kπ, k∈Z
x∈(-3π/4; π/4)⇒x=-π/2
2) 2cosx+1=0
2cosx=-1
cosx=-0,5
x=±2π/3+2kπ
x∈(-3π/4; π/4)⇒x=-2π/3