Воспользуемся формулой "сумма синусов равна удвоенному произведению синуса полусуммы на косинус полуразности":
2sin ((x+y)/2)cos ((x-y)/2)= - √2;
из первого уравнения ⇒sin((x+y)/2)=sin (π/2)=1, поэтому второе уравнение превращается в
sin((x-y)/2)=-√2/2; (x-y)/2=-π/4+2πn или (x-y)/2=-3π/4+2πk; x-y=-π/2+4πn или x-y=-3π/2+4πk. Чтобы получить ответ, сложим первое уравнение с получившимися и результат разделим на 2 (найдем x), а затем вычтем из первого получившиеся и результат разделим на 2 (найдем y).
x=π/4+2πn или x=-π/4+2πk; y=3π/4-2πn или y= 5π/4-2πk
ответ: (π/4+2πn; 3π/4-2πn); (-π/4+2πk; 5π/4-2πk); n, k∈Z
Рисуем прямоугольник... на глаз "отрезаем" (чертим) полоски с двух сторон соответственно 2 и 3 см по срединке получился квадрат, отмечаем стороны а сторону в получившемся четырехугольнике - 2 см... отмечаем как в ну и сторону в получившемся прямоугольнике - 3 см. отмечаем как сторону с ...
площадь любого прямоугольника одна сторона умножаем на вторую...
S квадрата = а*а S прямоугольника со стороной 2 см = а * 2 S прямоугольника со стороной 3 см а * 3
по условию задачи площадь квадрата на 51 см кв. меньше общей площади
2sin ((x+y)/2)cos ((x-y)/2)= - √2;
из первого уравнения ⇒sin((x+y)/2)=sin (π/2)=1, поэтому второе уравнение превращается в
sin((x-y)/2)=-√2/2;
(x-y)/2=-π/4+2πn или (x-y)/2=-3π/4+2πk;
x-y=-π/2+4πn или x-y=-3π/2+4πk. Чтобы получить ответ, сложим первое уравнение с получившимися и результат разделим на 2 (найдем x), а затем вычтем из первого получившиеся и результат разделим на 2 (найдем y).
x=π/4+2πn или x=-π/4+2πk;
y=3π/4-2πn или y= 5π/4-2πk
ответ: (π/4+2πn; 3π/4-2πn); (-π/4+2πk; 5π/4-2πk); n, k∈Z