Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
если х и у целые
ху=6 а х>0
значит на целых числах либо х=1 у=6 либо х=2 у=3 либо х=3 у=2 либо у=1 х=6
раз х взяли три раза а у 2 то проверяем условие х=2 у=3 или х=1 у=6
в первом случае 6+6=12 во втором 3+12=15
ответ 12
если не известно что х и у целые
у-положительное
выражаем х х=6/у
подставляем
получим
18/у+2у
берем производную от функции f(y)= 18/у+2у
f'=-18/y^2+2
ищем нули производной y=3 и y=-3 (нам не подходит)
y=3 - точка миимума ( f'(1)<0, f'(4)>0)
значит на множестве положительных чисел f(y)= 18/у+2у будет принимать наименьшее значение в у=3 , а это f(3)=12