Решение: Обозначим стоимость 1кг товара осенью за (х) руб, тогда стоимость 1кг товара весной стала стоить (х+1000) руб, так как весной товар подорожал на 1000 руб по сравнению с осенью. Осенью можно было купить товара в кг : 825 000 : х=825000/ х (кг) Весной этого же товара можно купить в кг: 825 000 : (х+1000)=825000/ (х+1000) (кг) А так как весной на эту же сумму товара было куплено на 220 кг меньше, то составим уравнение: 825000/х - 825000/ (х+1000)=220 Приведём уравнение к общему знаменателю (х)*(х+1000): (х+1000)*825000 - х*825000=(х)*(х+1000)* 220 825000 + 825000000 - 825000х=220х² +220000х 220х² +220000х-825000000=0 упростим уравнение сократив(разделив) все его значения на 220: х² +1000х - 3750000=0 - это простое приведённое квадратное уравнение, поэтому будем решать без дискриминанта: х1,2=-1000/2+-√{(-500)²+3750000}= -500+-√(250000+3750000)=-500+-√4000000=-500+-2000 х1=-500+2000=1500 х2=-500-2000=-2500 (это число не соответствует условию задачи, так как цена товара не может быть отрицательным числом) х=1500 (руб)-цена 1 кг товара осенью 1500руб+1000руб=2500руб-цена 1кг товара весной. Осенью было куплено товара в кг: 825000 : 1500=550 (кг) ПРОВЕРКА: 825000/1500 - 825000/(1500+1000)=220 550 - 330=220 220=220 -что соответствует условию задачи
ответ: цена 1кг товара весной составляет 2500 руб; осенью было куплено товара 550 кг
Відповідь:
1) (12b-12c)*(12b+12c)
2) 5(a^2 - 4)
3) 8х²+16ху+8у² = 8(х² + 2ху + у²)=8(х+у)²
4) -3b(4b^2+4b)
5) 3(x^3+y^3)
6)= 5m (m^3 - 64n^3) = 5m (m - 4n)(m^2 + 4mn + 16n^2)