М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Senn7
Senn7
16.06.2022 15:34 •  Алгебра

Найдите расстояние между точками координатной плоскости;
а) А(2; 0) и B(-3; 0);
б) К(15; 0) и L(0; -8);
д) C(0; -12) и D(-5; 0);
в) M(7; -4) и N(7; 6);
e) R(5; -1) и Q-5; -1).

👇
Открыть все ответы
Ответ:
Ganster1234567
Ganster1234567
16.06.2022
Для решения задач на движение существует готовая формула
s = v * t - формула пути
s - расстояние         1 м 25 см = 125 см
v - скорость              54 см/ч      
t - время                           ?
t = 125 cм : 54 см/ч = 2 целых 17/54 часа = 2 ч 18,(8) мин
ответ: за 2 часа и примерно 19 минут.

Но уж если в условии задачи дали размеры гусеницы, попробуем использовать и эту величину. 
(начало пути) < 125 см > + 1 cм = 126 см (конец пути)
t = 126 см : 54 см/ч = 126/54 = 2 18/54 = 2 1/3 часа - за это время гусеница преодолеет расстояние 125 см (вынесет свой хвост за отметку 125 см)
2 1/3 часа = 2 ч + (60 : 3) мин = 2 ч 20 мин.
ответ: за 2 ч 20 мин.
4,7(33 оценок)
Ответ:
andrognew2018
andrognew2018
16.06.2022
Решение уравнения будем искать в виде y=e^{\beta\cdot x}.

Составим характеристическое уравнение.
 \beta^2-3\beta=0\\ \beta_1=0;\\ \beta_2=3;

Фундаментальную систему решений функций:
y_1=1\\ y_2=e^{3x}

Общее решение однородного уравнения:
 y_{*}=y_1+y_2=C_1\cdot e^{3x}+C_2

Теперь рассмотрим прафую часть диф. уравнения:
 f(x)=3e^{3x}

найдем частные решения.
Правая часть имеет вид уравнения
P(x)=e^{\alpha x}(R(x)\cos(\gamma x)+L(x)\sin(\gamma x)), где R(x) и S(x) - полиномы, которое имеет частное решение.

y=x^ze^{\alpha x}(P(x)\cos(\gamma x)+S(x)\sin (\gamma x)), где z -кратность корня \alpha+\gamma i

У нас R(x) = 3; L(x) = 0; \alpha=3;\,\, \gamma =0

Число \alpha + \gamma i=3 является корнем характеристического уравнения кратности z=1

Тогда уравнение имеет частное решение вида:
 y=x(Ae^{3x})
Находим 2 производные, получим
y'=3Ax3e^{3x}+Ae^{3x}\\ y''=3Ae^{3x}(3x+2)

И подставим эти производные в исходное диф. уравнения
y''-3y'=3e^{3x}\\ 3Ae^{3x}=3e^{3x}\\ A=1

Частное решение имеет вид: y_*=xe^{3x}

Общее решение диф. уравнения:
  y=C_1e^{3x}+C_2+xe^{3x}
4,6(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ