Пусть катеты a и bа/b=3/4a=3b/4пусть меньший отрезок, на которые делит высота гипотенузу равен x тогда второая x+14по теореме высота h^2=x(x+14)по теореме пифагора a^2=x^2+h^2=x^2+x(x+14)=2x^2+14xснова по теореме пифагора: b^2=h^2+(x+14)^2=x(x+14)+(x+14)^2=x^2+14x+x^2+28x+196=2x^2+42x+196но так как мы сказали что a=3b/4 => a^2=9b^2/16=9(2x^2+42x+196)/169(2x^2+42x+196)/16=2x^2+14x9(2x^2+42x+196)=32x^2+224x18x^2+378x+1764=32x^2+224x-14x^2+154x+1764=014x^2-154x-1764=0x^2-11x-126=0x=18 осталось найти a и b и найти площадь
Дано: Доказать, что — прямая пропорциональность. ---------- От нас требуется доказать, что — прямая пропорциональность, то есть доказать, что в выражении находится в первой степени (не , не , не и не , а просто ). Рассмотрим данное выражение . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид , где , и . Формула «разность квадратов» раскрывается так: . Раскроем наше выражение по формуле: Упростим: . Итак, получается, что , находится в первой степени, а значит зависимость — есть прямая пропорциональность. Доказано.