Найдем производную функции: y`(x) = 1 - 4/x^2 Приравняем ее нулю: 1-4/x^2 = 0 4/x^2 = 1 x^2 = 4 x1 = 2, x2 = -2 Нашему промежутку соответствует точка х = 2. Найдем вторую производную и подставим туда нашу точку, чтобы узнать что это за точка: y``(x) = 8/x^3 y``(2) = 8/8 = 1 Положительное значение второй производной, следовательно, х = 2 - точка минимума. Минимум равен y(2) = 2 + 4/2 = 4
На данном промежутке одна экстремальная точка, соответствующая минимума, значит график функции с обоих краев точки уходит вверх, чтобы найти максимальное значение сравним значения краев заданного промежутка: y(1) = 1 + 4/1 = 5 y(3) = 3 + 4/3 = 4 + 1/3 y(1) = 5 больше, значит это точка максимума для данного промежутка.
Пусть х деталей в час должен был обрабатывать токарь по плану. Применив новый резец, он стал обтачивать в час на 20 деталей больше, т.е. х+20 деталей. Тогда токарь должен был обработать 120 деталей за часов, а обработал за часов, закончив работу на 1 час раньше. Составим и решим уравнение: - =1 (умножим на х(х+20), чтобы избавиться от дробей) - =1x(x+20) 120*(х+20)-120х=х²+20х 120х+2400-120х-х²-20х=0 -х²-20х+2400=0 х²+20х-2400=0 D=b²-4ac = 20²-4*1*(-2400)=400+9600=10 000 (√10000=100) х₁= х₂= - не подходит, поскольку х<0. ОТВЕТ: по плану токарь должен был обработать 40 деталей в час. ------------------------- Проверка: 120:40=3 часа 120:(40+20)=120:60=2 часа 3 часа - 2 часа = 1 час - разница
2 - 2(х - 1) = 14
2 - 2х + 2 = 14
4 - 2х = 14
2х = 4 - 14
2х = -10
х = -10 : 2
х = -5.