ответ:
) а) f(x) = 1/5x5 - x3 + 4.
f'(х) = 1/5 * 5 * х4 – 3х² = х4 – 3х².
б) f(x) = (3x – 1)/x3.
производная произведения: (f * g)' = f' * g + f * g'.
f'(х) = (3x – 1)' * x3 + (3x – 1) * (x3)' = 3 * x3 + (3x – 1) * 3x² = 3x3 + 9x3 – 3x² = 12x3 – 3x².
в) f(x) = 1/(2cosx).
производная дроби: (f/g)' = (f' * g - f * g')/g^2.
f'(х) = (1' * 2cosx - 1* (2cosx)')/( 2cosx)^2 = (0 - 1* (-2sinx))/2cos²x = sinx/cos²x.
2) а) f(x) = xsinx.
f'(х) = х' * sinx + х * (sinx)' = sinx + хcosx.
x = п/2; f'(п/2) = sinп/2 + п/2cosп/2 = 1 + п/2 * 0 = 1.
б) f(x) = (2x - 3)6.
f'(х) = 6(2х – 3)5 * (2х – 3)' = 6(2х – 3)5 * 2 = 12(2х – 3)5.
х = 1; f'(1) = 12(2 * 1 – 3)5 = 12 * (-1)5 = -12.
3) а) f(x) = 2sinx – x.
f'(х) = 2cosx – 1.
f'(х) = 0; 2cosx – 1 = 0.
2cosx = 1.
cosx = ½.
х =±п/3 + 2пn, n – целое число.
b) f(x) = x5 + 20x².
f'(х) = 5х4 + 20х.
f'(х) = 0; 5х4 + 20х = 0.
х(5х3 + 2) = 0.
отсюда х = 0.
или 5х3 + 2 = 0; 5х3 = -2; х3 = -2/5; х = 3√(-2/5).
объяснение:
1.В
Диагонали ромба не равны, они в точке пересечения делятся по полам.
2.
Зная что сумма внутренних углов четырехугольника 360° составим уровнение:
110+110+х+х=360
220+2х=360
2х=360-220
2х=140°
Х=70°
ответ:В
3.
S=a²
Увеличим в два раза:
S=(2a)²=4a²
ответ:Б, увеличится в 4 раза.
4.
Синус-отношение противолежайщего катета к гипотенузе.
По теореме Пифагора найдём гипотенузу:
5²+12²=25+144=169
√169=13
Синус равен-5/13
ответ:а
5.
Сначала найдём сумму внутренних углов в пятиугольнике:
180(n-2)=180(5-2)=180*3=540
Составим уровнение:
2х+4х+х+3х+8х=540
18х=540
Х=30
8*30=240°
ответ:В
6.
Найдем гипотенузу первого треугольника:
6²+8²=36+64=100
√100=10
Подобный ему треугольник в три раза больше него значит и катет будет в три раза больше:
6*3=18см
ответ:а
7.
Проведем две высоты и по теореме Пифагора найдём его:
10²-8²=100-64=36
√36=6
Найдем площадь трапеции:
S=Lh
L-средняя линия
h-высота
Найдем среднюю линию:
L=(4+20)÷2=24÷2=12
Подставляем:
S=12*6=72
ответ:72см²
8.
15²=9*АС
225=9*АС
АС=25(гипотенуза)
По теореме Пифагора найдём катет:
25²-15²=625-225=400
√400=20
Найдем площадь:
S=1/2*15*20=150
ответ:150см²