Можно попробовать разбить на систему неравенств: 1/3≤(x^2-x+1)/(x^2+x+1) и (x^2-x+1)/(x^2+x+1)≥3 после приведения к общему знаменателю, переносу в левую часть и упрощения получаем: (x-1)^2/(3(x^2+x+1))≥0 и -(x+1)^2/(x^2+x+1)≤0 далее рассуждаем: первое неравенство- дробь больше или равна нулю в двух случаях, когда числитель больше или равен нулю, знаменатель больше нуля и когда числитель меньше или равен нулю и знаменатель меньше нуля. В нашем случае, независимо от значений x, числитель больше или равен нулю, знаменатель всегда строго больше нуля. Следовательно данная дробь всегда положительна. Аналогичные рассуждения со второй дробью. Она всегда отрицательна или равна нулю- числитель при любых x отрицательный, а при x=-1 равен нулю. А знаменатель всегда положительный. Следовательно выполняется указанное двойное неравенство. ч.т.д.
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
(х-7)(х+7)
х²-7²
х²-49