Наш многочлен имеет вид
Пусть меньший его корень равен . Так как корни образуют арифметичекую прогрессию, можем записать:
Многочлен раскладывается на линейный множители следующим образом:
Напрашивается замена . Тогда
Нам нужно найти минимумы этой функции, поэтому дифференцируем:
Теперь требуется найти корни этого многочлена. Используя теорему о рациональных корнях многочлена можно найти корень
Согласно теореме Безу, должен делиться на
. Разложим на множители, чтобы найти остальные корни:
Решив квадратное уравнение , найдем корни
Расположив корни
на числовой прямой и использовав метод интервалов, узнаем, что производная меняет знак с минуса на плюс в точках , это и есть точки минимума. Переходя обратно к многочлену от x, получаем точки
Квадрат расстояния между ними:
х=1.2:3
х=0.4
6z=-5.4
z=-5.4:6
z=-0.9