М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
23245086
23245086
27.11.2020 08:43 •  Алгебра

Aво 2 степени × на а в - 5 степени. (x в 3 степени) в - 2 степени. b в - 4 степени ÷ 8 в - 3 степени. (x в 4 степени × x в - 7 степени) в минус 2 степени. (a во 2 степени) в минус 5 степени × (a в минус 4 степени) в a во 2 степени × на а в - 5 степени. (x в 3 степени) в - 2 степени. b в - 4 степени ÷ 8 в - 3 степени. (x в 4 степени × x в - 7 степени) в минус 2 степени. (y в 7 степени) в минус 3 степени × (y в минус 1 степени) в 5 степени (7 xy в минус 3 в минус 2)в минус 1

👇
Ответ:
Ardak123
Ardak123
27.11.2020

a)7m-m^4  

Выносим общий множитель за скобку  

ответ: m(7-m^3)  

б) 4a^2-24ab+36b  

Выносим общий множитель за скобку  

4(a^2-6ab+9^2)  

Воспользуемся формулой квадрата разности  

ответ: 4(a-3b)^2  

в) pb-pc+6b-6c = (b-c)p+(6b-6c)  

Выносим общий множитель  

(b-c)p+(b-c)6=(b-c)(p+6)  

ответ: (b-c)(p+6)  

 

Уравнение:  

x^3+125+5x(5+x)=0  

Производим группировку  

(x^3+125)+5x(5+x)=0  

Воспользуемся формулой суммы кубов  

(x^2-5x+25)(x+5)+(5x)(x+5)=0  

Выносим общий множитель  

((x^2-5x+25)+5x)(x+5)=0  

Раскрываем скобки  

(x^2-5x+25+5x)(x+5)=0  

Приводим подобные члены  

(x^2+25)(x+5)=0  

Уравнение равно нулю если хотя бы один из множителей равен нулю  

x^2+25=0  

x^2=-25  

корня нет  

x+5=0  

x=-5  

ответ: x=-5  

 

Преобразование:  

а) (7a+b)(7a-b)-(b-4a)(4a+b)  

Выносим знак минуса  

(7a+b)(7a-b)+(4a-b)(4a+b)  

Воспользуемся формулой разности квадратов  

(49a^2-b^2)+(16a^2-b^2)  

Раскрываем скобки и приводим подобные члены  

65a^2-2b^2  

ответ: 65a^2-2b^2

4,8(57 оценок)
Открыть все ответы
Ответ:
iskakova2000
iskakova2000
27.11.2020
Этот корень называют арккосинусом числа a и обозначают arccos a.

Определение Арккосинусом числа называется такое число , косинус которого равен а:
если и

Все корни уравнений вида cos(х) = а, где , можно находить по формуле

Можно доказать, что для любого справедлива формула

Эта формула позволяет находить значения арккосинусов отрицательных чисел через значения арккосинусов положительных чисел.

Уравнение sin х = а
Из определения синуса следует, что . Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где , на отрезке имеет только один корень. Если , то корень заключён в промежутке ; если а < 0, то корень заключён в промежутке
Этот корень называют арксинусом числа а и обозначают arcsin а

Определение Арксинусом числа называется такое число , синус которого равен а:
, если и

Все корни уравнений вида sin(х) = а, где , можно находить по формуле

Можно доказать, что для любого справедлива формула

Эта формула позволяет находить значения арксинусов отрицательных чисел через значения арксинусов положительных чисел.

Уравнение tg х = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале только один корень. Если , то корень заключён в промежутке ; если а < 0, то в промежутке .
Этот корень называют арктангенсом числа a и обозначают arctg a

Определение Арктангенсом любого числа a называется такое число , тангенс которого равен а:
, если и

Все корни уравнений вида tg(х) = а для любого a можно находить по формуле

Можно доказать, что для любого a справедлива формула

Эта формула позволяет находить значения арктангенсов отрицательных чисел через значения арктангенсов положительных чисел.

Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin x = a, cos x = а, tg x = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Уравнения, сводящиеся к квадратным
Решить уравнение 2 cos2 х - 5 sin х + 1 = 0

Заменяя cos2 х на 1 - sin2х, получаем
2 (1 - sin2х) - 5 sin х + 1 = 0, или
2 sin2х + 5 sin x - 3 = 0.
Обозначая sin х = у, получаем 2у2 + 5y - 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin х = - 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin х = 0,5;
ответ

Решить уравнение 2 cos2 6х +8 sin 3х cos 3x - 4 = 0

Используя формулы
sin2 6x + cos2 6x = 1, sin 6х = 2 sin 3x cos 3x
преобразуем уравнение:
3 (1 - sin2 6х) + 4 sin 6х - 4 = 0 => 3 sin2 6х - 4 sin 6x + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y2 - 4y +1 =0, откуда y1 = 1, y2 = 1/3
1)
2)

ответ
Уравнение вида a sin x + b cos x = c
Решить уравнение 2 sin x + cos x - 2 = 0

Используя формулы и записывая правую часть уравпения в виде получаем

Поделив это уравнение на получим равносильное уравнение
Обозначая получаем уравнение 3y2- 4y + 1 = 0, откуда y1=1, y1= 1/3

1)
2)
ответ
В общем случае уравнения вида a sin x + b cos x = c, при условиях можно решить методом введения вс угла.
Разделим обе части этого уравнения на :

Введём вс аргумент , такой, что

Такое число существует, так как

Таким образом, уравнение можно записать в виде

откуда

где или
Изложенный метод преобразования уравнения вида a sin x + b cos x = c к простейшему тригонометрическому уравнению называется методом введения вс угла.
Решить уравнение 4 sin x + 3 cos x = 5

Здесь a = 4, b = 3, . Поделим обе части уравнения на 5:

Введём вс аргумент , такой, что Исходное уравнение можно записать в виде

откуда

ответ
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin 2 х - sin х = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin х cos x - sin x = 0. Вынося общий множитель sin x за скобки, получаем sin x (2 cos x - 1) = 0
1)
2)
ответ
Решить уравнение cos 3х cos х = cos 2x
cos 2х = cos (3х - х) = cos 3х cos x + sin 3х sin x, поэтому уравнение примет вид sin x sin 3х = 0
1)
2)
Заметим, что числа содержатся среди чисел вида
Следовательно, первая серия корней содержится во второй.
ответ
Решить уравнение 6 sin2 х + 2 sin2 2x = 5
Выразим sin2x через cos 2x.
Так как cos 2x = cos2x - sin2x, то
cos 2x = (1 - sin2 х) - sin2 х, cos 2x = 1 - 2 sin2 х, откуда
sin2 х = 1/2 (1 - cos 2x)
Поэтому исходное уравнение можно записать так:
3(1 - cos 2x) + 2 (1 - cos2 2х) = 5
2 cos2 2х + 3 cos 2х = 0
cos 2х (2 cos 2x + 3) = 0
1) cos 2х =0,
2) уравнение cos 2x = -3/2 корней не имеет.
ответ
4,7(30 оценок)
Ответ:
Полина3061
Полина3061
27.11.2020
А) Частная производная по х: 
zₓ'=((x+2y)*y²)ₓ'=(xy²+2y³)ₓ'=(xy²)ₓ'+(2y³)ₓ'=y²+0=y²
Частная производная по у (при переписывании вместо а надо писать у, в предложенных индексах нет такой буквы, потому использую а:
zₐ'=((x+2y)*y²)ₐ'=(xy²+2y³)ₐ'=(xy²)ₐ'+(2y³)ₐ'=2xy+6y²

в) zₓ'=(9(x-y²)⁴)ₓ'=9*((x-y²)⁴)ₓ'*(x-y²)ₓ'=9*4*(x-y²)³*1=36(x-y²)³
zₐ'=((9(x-y²)⁴)ₐ'=9*((x-y²)⁴)ₐ'*(x-y²)ₐ'=9*4*(x-y²)³*(-2y)=-72y(x-y²)³

б) zₓ'=(cos(2x+e^y))ₓ'=(cos(2x+e^y))ₓ'*(2x+e^y)ₓ'=-sin(2x+e^y)*2=-2sin(2x+e^y)
zₐ'=(cos(2x+e^y))ₐ'=(cos(2x+e^y)ₐ'*(2x+e^y)ₐ'=-sin(2x+e^y)*e^y
4,5(2 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ