y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
В решении.
Объяснение:
Волшебная карета, которая увезла Шрека и его принцессу в свадебное путешествие, первую часть пути ехала со скоростью 81 км/ч и проехала таким образом первые 162 км пути. Затем следующие 81 км карета ехала со скоростью 54 км/ч, и наконец, последний участок протяжённостью 54 км — со скоростью 27 км/ч.
Вычисли среднюю скорость кареты на протяжении всего пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
S = 162 + 81 + 54 = 297 (км).
t= 162/81 + 81/54 + 54/27 = 2 + 1,5 + 2 = 5,5 (часа).
v = S/t
v = 297/5,5 = 54 (км/час).
(х+3)/3