Условие: Пусть длина окружности меньшего колеса это х м, Тогда длина окружности большего колеса это (х+1) м Количество оборотов меньшего колеса (y+20) Количество оборотов меньшего колеса y
Решение: Составляем систему уравнений: x(y+20)=175 и (x+1)y=175 xy+20x=175 и xy+y=175 Из первого уравнения вычитаем второе: 20х=y Подставляем полученное значение y во второе уравнение: x*20x+20x=175 20x^2+20x-175=0 x^2+x-8,75=0 D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36 x=2,5 (м) - длина окружности меньшего колеса х+1=2,5+1=3,5 (м) - длина окружности большего колеса
В уравнении явно отсутствует . Понизим порядок: (1) Тогда исходное дифференциальное уравнение примет вид: . Разделим уравнение на (, в противном случае мы бы имели уравнение , нерешаемое в действительных числах): . Полученное уравнение явно не содержит . Сделаем замену . Тогда: , или, полагая , . Получили линейное неоднородное уравнение 1-ого порядка. Решая его (оставляю это на вас), находим Разделяем переменные и интегрируем: (2) Находим интеграл в левой части (это тоже на вас): (1') Из (1) и (2) имеем: , отсюда, находя интеграл в правой части, находим . (2') Составляя систему из условий (1') и (2'), исключаем по возможности параметр p и записываем общий интеграл.
-6у = -5х-8
6у=5х + 8
у = 1/6 * (5х+8)
х=2, у=3
х=-4 у=-2