V(л) = 16,5 км/час - скорость лодки
V(р) - скорость реки
V(л) + V(р) - скорость лодки по течению реки
V(л) - V(р) - скорость лодки против течения реки
S - путь в один конец
Тогда время будет:
по течению:
t(1) = S / (V(л) + V(р)) = 2ч 20мин . = 2 1/3 часа = 7/3 часа
Отсюда
S = 7/3 * (V(л) + V(р))
по течению:
t(2) = S / (V(л) - V(р))= 2ч 20мин - 28 мин = 7/3 часа - 28/60 часа=7/3 - 7/15 часа = 35/15 - 7/15 = 28/15 часа
Отсюда
S = 28/15 * (V(л) - V(р))
приравнять S в обоих случаях и решить уравнения
|x| = - х при х меньше 0
а) Sin x ≥ 0 (2πk ≤ x ≤π + 2πk, k∈Z) (*)
Уравнение запишем: Cos² x - Sin x +1 = 0 Решаем.
1 - Sin² x - Sin x +1 = 0
-Sin² x - Sin x +2 = 0
D =9 Sin x = -2 (нет решений)
Sin x =1
x = π/2 + 2πk, k∈Z ( входит в (*)
б) Sin x меньше 0 (π + 2πn меньше х меньше 2π + 2πn, n∈Z)(**)
Уравнение запишем: Сos² x + Sin x +1 = 0 решаем:
1 - Sin² x +Sin x +1 = 0
- Sin² x + Sin x +2 = 0
D = 9 Sin x = -1
x = -π/2+ 2πn,n∈Z ( входит в (**)
Sin x =2( нет решения)
2) Sin² x + Cos ² x +5Sin x Cos x +3Cos² x = 0
Sin² x + 5Sin x Cos x +4 Cos² x = 0 | : Cos² x≠0
tg² x + 5tg x +4 = 0
а) tg x = - 4 б) tg x = -1
x = arctg(-4) + πk,k∈Z x = arctg(-1) + πn,n∈Z
x = - π/4 + πn, n∈Z
3)