y=12⋅cos(x−π3)
Используем вид записи acos(bx−c)+d
для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
a=12
b=1
c=π3
d=0
Найдем амплитуду |a|
.
Амплитуда: 12
Определим период при формулы 2π|b|
.
Нажмите, чтобы увидеть больше шагов...
Период: 2π
Найдем сдвиг периода при формулы cb
.
Нажмите, чтобы увидеть больше шагов...
Фазовый сдвиг: π3
Найдем вертикальное смещение d
.
Вертикальный сдвиг: 0
Перечислим свойства тригонометрической функции.
Амплитуда: 12
Период: 2π
Фазовый сдвиг: π3
(на π3
вправо)
Вертикальный сдвиг: 0
Выберем несколько точек для нанесения на график.
Нажмите, чтобы увидеть больше шагов...
xf(x)π3125π604π3−1211π607π312
Тригонометрическую функцию можно изобразить на графике, опираясь на амплитуду, период, фазовый сдвиг, вертикальный сдвиг и точки.
Амплитуда: 12
Период: 2π
Фазовый сдвиг: π3
(на π3
вправо)
Вертикальный сдвиг: 0
xf(x)π3125π604π3−1211π607π312
Объяснение:
3
Объяснение:
Первое утверждение не верное потому, что если мы из а вычтем 6, то получим отрицательное число (число со знаком минус), которое не может быть больше нуля, следовательно это не правильный ответ
Второе утверждение не верное потому, что если мы из 7 вычтем а, то получим положительное число (число со знаком плюс), которое не может быть меньше нуля, следовательно это правильный ответ
Третье утверждение верное потому, что если мы из а вычтем 6, то мы получим положительное число, которое больше нуля, следовательно это правильный ответ
Четвёртое утверждение не верное потому, что если вы из а вычтем 4, то мы получим положительное число, которое не может быть меньше нуля, следовательно это неправильный ответ
x^4 + 4x^3 – 4x^2 – 20x – 5 = 0
---
Решаем методом Феррари
---
Делаем замену по формуле (x = y - (a / 4)), где a - коэф. при 3-ей степени
x = y - 1
x^4 + 4x^3 – 4x^2 – 20x – 5 =
= (y – 1)^4 + 4(y – 1)^3 – 4(y – 1)^2 – 20(y – 1)– 5 =
= y^4 – 4y^3 + 6y^2 – 4y + 1 + 4y^3 – 12y^2 + 12y – 4 –
– 4y^2 + 8y – 4 – 20y + 20 – 5 =
= y^4 – 10y^2 – 4y + 8
y^4 – 10y^2 – 4y + 8 = 0
p = -10, q = -4, r = 8
Кубическая резольвента:
2s^3 + 10s^2 – 16s – 84 = 0
Сократим на 2:
s^3 + 5s^2 – 8s – 42 = 0
Корень кубической резольвенты:
s = -3
Используя формулу y^2 - y * (√2√x - √p) + (q / (2 * √2√s - √p)) + s = 0
Получаем:
y^2 – 2y – 4 = 0
По дискриминанту корни:
y1 = 1 - √5 ; y2 = 1 + √5
Подставляем значения p = -10, q = -4 и s = -3 в формулу
y^2 + y * √2√s - √p - (q / 2 * √2s - √p) + s = 0
Получаем:
y^2 + 2y – 2 = 0
По дискриминанту корни:
y3 = -1 - √3 ; y4 = -1 + √3
Подставляем все значения y в формулу x = y – 1
Получаем корни уравнения:
x1 = -√5 ; x2 = √5 ; x3 = -2 - √3 ; x4 = -2 + √3
ответ
x1 = -√5 ; x2 = √5 ; x3 = -2 - √3 ; x4 = -2 + √3