М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
polinavorkuta
polinavorkuta
10.08.2022 00:44 •  Алгебра

Решите неравенство
6/х-2 - 1/х<0

👇
Ответ:
moxic37280
moxic37280
10.08.2022

6/х-2 - 1/х<0,х≠2,х≠0

6х-(х-2)/х*(х-2) < 0

6х-(х-2)/х*(х+2) < 0

5х+2/х*(х-2)<0

{5х+2<0

{х*(х-2)>0

{5х+2>0

{х*(х-2)<0

{х<-2/5

{х∈(-∞,-2/5)U (2,+∞)

{x>-2/5

{x∈ (0,2)

х∈(-∞,-2/5)

x∈ (0,2)

х∈(-∞,-2/5) U(0,2),x≠2,x≠0

ответ: х∈(-∞,-2/5) U(0,2)

4,7(35 оценок)
Открыть все ответы
Ответ:
Gamer2205395
Gamer2205395
10.08.2022

1)Найдём абсциссу точки пересечения графиков этих из уравнения

          f(x) = g(x)

           2 √x = 2√(6-x)            -  возводим в квадрат обе части

           4х  =  4(6-x)

           4х  =  24 - 4х

           8х = 24

           х = 3

Угол, под которым пересекаются графики  -   это угол между касательными, проведёнными к линиям в точке их пересечения. Производная функции в данной точке равна угловому коэффициенту касательной, проведённой к графику функции в данной точке, поэтому угол, под которым пересекаются линии, находимм по формуле:

 

                         tgα = (k₁ - k₂)/(1 +k₁k₂)

                         k₁ =  f'(x₀),   k₂ =  g'(x₀)


Сначала найдем значения производных функций в точке х = 3:

f'(x) = (2 √x)' = 1/√x                  k₁ =  f'(3) = 1/√3 

g'(x) = (2√(6-x))' =  - 1/√6-x       k₂ =  g'(3) =  - 1/√6-3 =  - 1/√3


Тогда  тангенс угла пересечения в точке х = 1 равен

tgα = (1/√3 - (- 1/√3)) / (1 + 1/√3*(- 1/√3))  = 2/√3  /  (1 - 1/3) =

= 2/√3 : 2/3  = 2/√3 * 3/2 = √3


                =>                α = arctg √3 = π/3


ответ: графики функций углом пересекаются углом пересекаются пересекаются под углом π/3.

4,8(11 оценок)
Ответ:
Софалия
Софалия
10.08.2022

Відповідь:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

– первообразная функция.

– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части  у нас превращаются в другие функции: .

У наше определение.

Решить неопределенный интеграл  – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.

Возьмем, например, табличный интеграл . Что произошло?  превратился в функцию .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно осуществлять превращения по некоторым формальным правилам. Так, в случае  совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:

Пояснення:

4,4(95 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ