-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
пояснения прилагаю.
1) 1.
⅓ =
отсюда: - 1 × (x + 1) = - x - 1
2. так как основания одинаковы, можно от них "избавиться" и записать только показатели.
2) 1. выносим общий множитель за скобку, используя одно из свойств показательных выражений:
2. делим выражение на коэффициент при x
3. так как основания одинаковы, можно от них "избавиться" и записать только показатели.
3) 1. преобразовав выражение (от перемены мест множителей проивзедение не меняется),
можно сделать замену, приводящую уравнение к квадратному.
первый корень: x ∉ R, так как значения показательной функции всегда положительны (иными словами, если строить график, то ни x, ни y никогда не будут принимать отрицательные значения).