1 действие: Кладём гирю (8кг) и мешок (50кг) на 1-ую чашу весов и из мешка (50кг) уравновешиваем весы. Получаем на весах гирю (8кг) + мешок (21кг) = мешок (29кг).
2 действие: Кладём мешок (29кг) на 1-ую чашу весов и гирю (8кг) на 2-ую чашу весов, после этого из мешка (29кг) отвешиваем мешок (8кг). Получаем в стороне мешок (21кг) и на весах мешок (8кг) = гирю (8кг).
3 действие: Кладём мешок (8кг) на 1-ую чашу весов и уравновешиваем весы. Получаем мешок (4кг) = мешок (4кг).
4 действие: Кладём мешок (4кг) на 1-ую чашу весов и уравновешиваем весы. Получаем мешок (2кг) = мешок (2кг).
5 действие: Кладём мешок (2кг) на 1-ую чашу весов и уравновешиваем. Получаем мешок (1кг) = мешок (1кг).
Кладём в ответ мешок (21кг) и мешок (1кг)
Объяснение
1. Функция, заданная формулой f(x) = ax² + bx + c , где x и f(x) - переменные, а "a, b, c" - некоторые числа числа, причем a≠0.
2. Графиком квадратичной функции является парабола.
3. xєR - х принадлежит множеству действительных чисел (-∞;∞).
4. [0;∞) - для у=х². но с изменением формулы графика, может поменяться область значений. Например: если а<0, то её ветви будут направлены вниз, и тогда область значений будет (-∞;0], но это не единственный фактор влияющий на область значений. На пример "х²-а"
график будет опущен на "а" вниз по Оси Оу и наоборот если х²+а, график будет приподнят на "а" по Оси Оу.
5. Квадратное неравенство – это такое неравенство, которое имеет вид ax²+bx+c<0 ax²+ bх+c < 0, где a, b и c – некоторые числа, причем а≠0.
6. ax²+bx+c.
Объяснение:
9х²-4=(3х-2)(3х±2)
4а²-20аb+25b²=(2a-5b)(2a+5b)
49-25e²=(7-5e)(7+5e)
9x⁴y⁴-16a²=(3x²y²-4a)(3x²y²+4a)
25a⁶-100=(5a³-10)(5a³+10)=25(a³-2)(a³+2)
x³-1/64y³=(x-1/4y)(x²+1/4xy+1/16y²)