Решение: Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
Решение: Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
если число n дает в остатке 3 значит оно заканчивается или на 3 или на 8
если число m в остатке дает 4 значит оно заканчивается или на 4 или на 9
3^2 = 9
8^2 = 64
4^2 = 16
9^2 = 81
складываем последние цифры (потому что признак делимости на 5 это 0 или 5 в конце)
9+6 = 15 делится на 5
9+1 = 10 делится на 5
4 + 6 = 10 делится на 5
4 + 1 = 5 делится на 5