1. Общее число исходов равно числу сочетаний из 36 по 2:
n = С(36,2) = 36!/(33!*2!) = 34*35*36/2 = 21420
Благоприятные исходы - это когда обе карты - тузы, т.е. выбираются из 4
тузов: m = C(4,2) = 4!/(2!*2!) = 3*4/2 = 6
Р = m/n = 6/21420 = 1/3570
2. Элементарный исход в этом опыте - упорядоченная пара чисел. Первое число
выпадает на первом кубике, второе - на втором. Множество элементарных исходов удобно представить таблицей: 11 21 31 41 51 61 12 22 32 42 52 62 13 23 33 43 53 63 14 24 34 44 54 64 15 25 35 45 55 65 16 26 36 46 56 66 Получено 36 исходов, т.е. n = 36. Из них нас интересуют только те, в которых сумма цифр равна 10. Из таблицы видно, что таких вариантов всего 3: 46, 55, 64. m = 3 Значит искомая вероятность равна: Р = m/n = 3/36 = 1/12.
3. Сначала подсчитаем вероятность того, что две карты окажутся одной масти. Пусть А - появление первой карты определенной масти, В - появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому: Р(АВ) = Р(А)*Р(В\А) = 9/36 * 8/35 = 1/4 * 8/35 = 2/35 Т.к. в колоде 4 различные масти, то вероятность, что обе карты окажутся одной масти равна: Р = 2/35 + 2/35 + 2/35 + 2/35 = 8/35
4. Аналогично задаче № 2. Множество элементарных исходов n = 36. Из них нас интересуют только те, в которых сумма цифр равна 6. Из таблицы видно, что таких вариантов всего 5: 15, 24, 33, 42, 51. m = 5 Значит искомая вероятность равна: Р = m/n = 5/36.
||x-2|-3x|=2x+2 Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов. при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2 Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2 2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2) Следующим шагом раскрываем модуль на интервале (1/2;2) -2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2) Раскроем внутренний модуль для x>2 |x-2-3x|=2x+2⇒|-2-2x|=2x+2 Подмодульная функция положительная при x<-1 и отрицательная при x>-1 раскрываем модуль на интервале (2;∞) 2+2x=2x+2⇒x∈(2;∞) итак, х∈{0;(2;∞)} .
1. Общее число исходов равно числу сочетаний из 36 по 2:
n = С(36,2) = 36!/(33!*2!) = 34*35*36/2 = 21420
Благоприятные исходы - это когда обе карты - тузы, т.е. выбираются из 4
тузов: m = C(4,2) = 4!/(2!*2!) = 3*4/2 = 6
Р = m/n = 6/21420 = 1/3570
2. Элементарный исход в этом опыте - упорядоченная пара чисел. Первое число
выпадает на первом кубике, второе - на втором. Множество элементарных исходов удобно представить таблицей: 11 21 31 41 51 61
12 22 32 42 52 62
13 23 33 43 53 63
14 24 34 44 54 64
15 25 35 45 55 65
16 26 36 46 56 66 Получено 36 исходов, т.е. n = 36. Из них нас интересуют только те, в которых сумма цифр равна 10. Из таблицы видно, что таких вариантов всего 3: 46, 55, 64. m = 3 Значит искомая вероятность равна: Р = m/n = 3/36 = 1/12.
3. Сначала подсчитаем вероятность того, что две карты окажутся одной масти. Пусть А - появление первой карты определенной масти, В - появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому: Р(АВ) = Р(А)*Р(В\А) = 9/36 * 8/35 = 1/4 * 8/35 = 2/35 Т.к. в колоде 4 различные масти, то вероятность, что обе карты окажутся одной масти равна: Р = 2/35 + 2/35 + 2/35 + 2/35 = 8/35
4. Аналогично задаче № 2. Множество элементарных исходов n = 36. Из них нас интересуют только те, в которых сумма цифр равна 6. Из таблицы видно, что таких вариантов всего 5: 15, 24, 33, 42, 51. m = 5 Значит искомая вероятность равна: Р = m/n = 5/36.