Построим график функции у = 8 + 2x - x²
Для этого преобразуем её к виду
у = -(х² - 2х + 1) + 9
у = -(х - 1)² + 9
Видим, что парабола у = -х² сдвинута по оси абсцисс на 1 вправо и на 9 вверх. То есть её вершина находится в точке с координатами (1; 9).
Найдём координаты точек пересечения параболы с осью ординат.
При х = 0 у = 8
И координаты точек пересечения параболы с осью абсцисс
у = 0
- х² + 2х + 8 = 0
D = 2² - 4 · (-1) · 8 = 36
√D = 6
х₁ = -0,5(-2 - 6) = 4
х₂ = -0,5(-2 + 6) = -2
Итак мы получили ещё две точки параболы (4; 0) и (-2; 0).
Строим параболу (веточки её опущены вниз).
Смотри прикреплённый рисунок.
1) по графику видим, что функция убывает на интервале х ∈ [1; +∞)
2) множество решений неравенства 8 + 2x - x^2 ≤ 0 есть объединение двух интервалов х∈ (-∞; -2] ∪ [4; +∞)
Точка пересечения диагоналей - К.
Дальше сплошная "угломания" :)))
угол DBC = угол CAD (опираются на одну дугу)
угол CAD = угол EBD (стороны взаимно перпендикулярны)
угол BDA = угол BCA (опираются на одну дугу)
угол ECF = угол BDA (стороны взаимно перпендикулярны)
Итак, в ЕBCF диагонали взаимно перпендикулярны, и каждая из диагоналей делит один из углов пополам (то есть ЕС - биссектриса BCF, FB - Биссектриса ЕВС.)
Рассматиривая последовательно пару треугольников КВС и FKC, убеждаемся в из равенстве (общий катет и прилежащий угол).
Потом аналогично устанавливаем равенство треугольников EBK и KBC.
И совсем просто отсюда следует, что и треугольник EKF равен BKC (по двум катетам)
ПОэтому EF = BC = 1
EBCF - ромб.
√40=√4×10=2√10
√48=√16×3=4√3
√490=√49×10=7√10
√360=√36×10=6√10
-1/7√147=-1/7√49×3=-1/7×7√3=-√3
3√8=3√4×2=3×2√2=6√2
-5√18=-5√9×2=-5×3√2=-15√2
-6√24=-6√4×6=-6×2√6=-12√6
-2,5√75=-2,5√25×3=-2,5×5√3=-12,5√3