М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
okcanaceninap06wvq
okcanaceninap06wvq
26.06.2021 22:21 •  Алгебра

Решите квадратное уравнение методом выделения квадрата двучлена: х2+10х+9=0 тут образец есть посмотри на него я вроде бы как решил но не знаю точно ли так


Решите квадратное уравнение методом выделения квадрата двучлена: х2+10х+9=0 тут образец есть посмотр

👇
Ответ:
Shersher8630166
Shersher8630166
26.06.2021

x²+10x+9=0

(x²+2*x*5+25) -9+25=0

(x+5)²-16=0

(x+5)= +4

x+5=4 или x+5= -4

x=4-5 x= -4-5

x= -1 x= -9

4,5(89 оценок)
Открыть все ответы
Ответ:
nadyam1982
nadyam1982
26.06.2021

y = 2x^3 - 3x^2 - 12x + 1 – это кубическая функция, проверим имеет ли она максимумы и минимумы, для этого найдем производную и приравняв у нулю, найдем промежутки возрастания и убывания. Если они имеются.

y = (2x^3 - 3x^2 - 12x + 1)’ = 6x^2 – 6x – 12;

6x^2 – 6x – 12 = 0;

x^2 – x – 2 = 0;

D = b^2 – 4ac;

D = (- 1)^2 – 4 * 1 * (- 2) = 1 + 8 = 9; √D = 3;

x = (- b ± √D)/(2a);

x1 = (1 + 3)/2 = 4/2 = 2;

x2 = (1 - 3)/2 = - 2/2 = - 1

Точки с абсциссами (- 1) и 2 – являются экстремумами, но ни одна из них не принадлежит промежутку [4; 5]. Значит наибольшее значение функции будет либо в точке 4, либо в точке 5.

y(4) = 2 * 4^3 – 3 * 4^2 – 12 * 4 + 1 = 128 – 48 – 48 + 1 = 129 – 96 = 33

y(5) = 2 * 5^3 – 3 * 5^2 – 12 * 5 + 1 = 250 – 75 – 60 + 1 = 251 – 135 = 116 – это наибольшее значение функции на интервале [4; 5].

ответ. max [4; 5] y = у(5) = 116.

4,4(84 оценок)
Ответ:
sonya0013
sonya0013
26.06.2021

Абсолютной величиной (или абсолютным значением) отрицательного числаназывается положительное число, получаемое от перемены его знака (-) на обратный (+). Абсолютная величина -5 есть +5, т. е. 5. Абсолютной величиной положительного числа (а также числа 0) называется само это число.

Знак абсолютной величины - две прямые черты, в которые заключается число, абсолютная величина которого берется. Например,

|-5| = 5,
|+5| = 5,
| 0 | = 0.

Сложение чисел с одинаковым знаком.а) При сложении двух чисел с одинаковым знаком складываются их абсолютные величины и перед суммой ставится общий их знак.

Примеры.
(+8) + (+11) = 19;
(-7) + (-3) = -10.

б) При сложении двух чисел с разными знаками из абсолютной величины одного из них вычитается абсолютная величина другого (меньшая из большей) а ставится знак того числа, у которого абсолютная величина больше.

Примеры.
(-3) + (+12) = 9;
(-3) + (+1) = -2.

Вычитание чисел с разными знаками.Вычитание одного числа из другого можно заменить сложением; при этом уменьшаемое берется со своим знаком, а вычитаемое с обратным.

Примеры.
(+7) - (+4) = (+7) + (-4) = 3; 
(+7) - (-4) = (+7) + (+4) = 11; 
(-7) - (-4) = (-7) + (+4) = -3; 
(-4) - (-4) = (-4) + (+4) = 0;

Замечание. При выполнении сложения и вычитания, особенно когда имеем дело с несколькими числами, лучше всего поступать так: 
1) освободить все числа от скобок, при этом перед числом поставить знак «+ », если прежний знак перед скобкой был одинаков со знаком в скобке, и « -», если он был противоположен знаку в скобке; 
2) сложить абсолютные величины всех чисел, имеющих теперь слева знак +; 
3) сложить абсолютные величины всех чисел, имеющих теперь слева знак -; 
4) из большей суммы вычесть меньшую и поставить знак, соответствующий большей сумме.

Пример.
(-30) - (-17) + (-6) - (+12) + (+2); 
(-30) - (-17) + (-6) - (+12) + (+2) = -30 + 17 - 6 - 12 + 2; 
17 + 2 = 19;
30 + 6 + 12 = 48;
48 - 19 = 29.

Результат есть отрицательное число -29, так как большая сумма (48) получилась от сложения абсолютных величин тех чисел, перед которыми стоили минусы в выражении -30 + 17 – 6 -12 + 2. На это последнее выражение можно смотреть и как на сумму чисел -30, +17, -6, -12, +2, и как на результат последовательного прибавления к числу -30 числа 17, затем вычитания числа 6, затем вычитания 12и, наконец, прибавления 2. Вообще на выражение а - b + с - d и т. д. можно смотреть и как на сумму чисел (+а), (-b), (+с), (-d), и как на результат таких последовательных действий: вычитания из (+а) числа (+b) , прибавления ( +c), вычитании ( +d) и т. д. 

Умножение чисел с разными знакамиПри умножении двух чисел умножаются их абсолютные величины и перед произведением ставится знак плюс, если знаки сомножителей одинаковы, и минус, если они разные.

Схема (правило знаков при умножении):

+*+=++*-=--*+=--*-=+
Примеры. 
( + 2,4) * (-5) = -12; 
(-2,4) * (-5) = 12; 
(-8,2) * (+2) = -16,4.

При перемножении нескольких сомножителей знак произведения положителен, если число отрицательных сомножителей четно, и отрицателен, если число отрицательных сомножителей нечетно.

Примеры. 
(+1/3) * (+2) * (-6) * (-7) * (-1/2) = 7 (три отрицательных сомножителя);
(-1/3) * (+2) * (-3) * (+7) * (+1/2) = 7 (два отрицательных сомножителя).

Деление чисел с разными знакамиПри делении одного числа на другое делят абсолютную величину первого на абсолютную величину второго и перед частным ставится знак плюс, если знаки делимого и делителя одинаковы, и минус, если они разные (схема та же, что для умножения).

Примеры. 
(-6) : (+3) = -2; 
(+8) : (-2) = -4; 
(-12) : (-12) = + 1

4,4(35 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ