Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
f'' (x) = 3x^2+6x = 0
3x(x+2)=0
x=0, x= -2
Рисуешь координатную прямую, на ней отмечаешь эти две точки. Они делят прямую на 3 промежутка: на первом промежутке(-бесконечность; -2] ставь плюс на втором минус, на третьем тоже плюс. Таким образом, а) функция убывает на промежутке от (-бесконечность; -2], возрастает от [-2; +бесконечность)...б) -2 точка минимума, 0 не является точкой экстремума, т.к. там не происходит смена знака...в) чтобы найти наибольшее и наименьшее значение, ты должен подставить -4, -2, 0 и 1 в начальную функцию и посчитать.