Пусть х км/ч скорость автомобиля, а расстояние от А до С равно 2у. Составим модель движения от А до С. Автомобиль ехал 2у/х , а мотоциклист проехал 2у/100, поскольку они встретились, но автомобиль ехал на 90 минут( 1,5 ч) дольше то: 2у/х - 1,5 = 2у/100 Теперь составим модель движения от А до Б. Автомобиль ехал 120/х часов, а мотоциклист доехал до С и проехал еще половину пути АС, т.е. 3у/100 часов. Составим второе уравнение: 120/х - 1,5 = 3у/100 Решаем систему методом подстановки: 120/х=3у/100 + 1,5 120/х = (3у + 150)\100 х = 120*100/(3у + 150) подставим значение х в первое уравнение: 2у*(3у + 150)/12000 - 1,5 = 2у/100 6у² + 300у - 18000 = 240у 6 у² + 60у -18000 =0 у² +10у - 300 = 0 по теореме обратной Виета у= 50 или у = - 60 этот корень посторонний. Поскольку в задачке требуется найти расстояние АС, то значение х можно не находить. Расстояние АС = 2у = 2*50 =100 ответ: 100
3(5+2у)+8у=1 5х-у=10 сложим эти уравнения
15+6у+8у=1 8х = 24
14у=-14 х=24/8=3
у=-1, у=14-3*3=14-9=5
х=5-2=3,
ответ:(3;-1) ответ: (3; 5)
3) х=7-4у 4) 2х-3у=5 |*2 , умножим ур-ние на 2
7-4у-2у=-5 3х+2у=14 |*3, умножим на 3 уравнение
6у=12 4x-6y=10 и выполним сложение
у=2 9x+6y=42 этих ур. и получим
х=7-8=-1 13x=52, x=4,
ответ: (-1; 2) 12+2y=14
2y=2, y=1
ответ: (4; 1)