13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
Сначала найдём на всякий случай эти точки:
1. 8-x^3=0
8 = x^3
x = 2
Первая точка - {2; 0}
2. у(-1) = 8 - (-1)^3 = 8 + 1 = 9
Вторая точка (-1; 9).
Теперь берём определённый интеграл первой функции на интервале [-1; 2]. Неопределённый интеграл будет равен:
8x - 1/4 x^4 + C
Подставляя границы, получаем:
S = (8*2 - 1/4*(2^4)) - (8*(-1) - 1/4*((-1)^4)) = (16 - 4) - (-8 + 1/4) = 19 3/4
Вроде бы так