ответ : 55 Решение. Поскольку среднее арифметическое десяти чисел равно 10, то их сумма равна 100. Самое большое из этих чисел будет принимать наибольшее значение, если остальные девять натуральных чисел равны соответственно 1, 2, 3, 4, 5, 6, 7, 8 и 9. Тогда их сумма – минимально возможная из всех сумм для девяти различных натуральных чисел. А оставшееся десятое число, таким образом, самое большое из тех, что в сумме с девятью остальными дают 100. Значит, искомое число: .
Пусть х -длина прямоугольника, у - ширина. Тогда площадь S = xy.
1-е увеличение.
х + 5 - новая длина прямоугольника, у + 4 - новая ширина прямоугольника.
S1 = (x + 5)(у + 4) = ху + 5у +4х + 20
Увеличение площади: S1 - S = ху + 5у +4х + 20 - xy = 5у +4х + 20.
По условию это 113 кв.м
5у +4х + 20 = 113 (1)
2-е увеличение.
х + 4 - новая длина прямоугольника, у + 5 - новая ширина прямоугольника.
S2 = (x + 4)(у + 5) = ху + 5х +4у + 20
Увеличение площади: S2 - S = ху + 5х +4у + 20 - xy = 5х +4у + 20
По условию это 116 кв.м
5х +4у + 20= 116 (2)
Решим систему уравнений (1) и (2)
Умножим (1) на 4, а (2) на 5
20у +16х + 80 = 452
25х +20у + 100= 580
Вычтем из нижнего уравнения верхнее
9х = 108
х = 12
Умножим (1) на 5, а (2) на 4
25у +20х + 100 = 565
20х +16у + 80 = 464
Вычтем из верхнего уравнения нижнее
9у = 81
у = 9