Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
S=22,5 км/ч , t=4 ч ,V р=3 км/ч. Пусть x - скорость катера , тогда (x+3) км/ч - это скорость катера по течению , а (x-3) км/ч - против течения.Составим уравнение 22,5 км только один раз по течению и один раз против течения , 22,5/(x+3)-время пройденное катером по течению, 22,5/(x-3)- против течения, 22,5/(x+3)+22,5/(x-3)=4 ч решаем 22,5*(x-3) / (x+3)(x-3) = 22,5x-67,5/x^2-9 22,5*(x+3) / (x+3)(x-3) = 22,5x+67,5/x^2-9 22,5x-67,5/x^2-9 + 22,5x+67,5/x^2-9 = 45x/x^2-9 45x/x^2-9=4 , 45x=x^2-9*4 4x^2-36=45x и 45x-4x^2-36=0 x=12 ответ: скорость катера равна 12 км/ч.
Дана функция у= х²- 2х - 3.
График её - парабола ветвями вверх.
Находим её вершину: хо = -в/2а = 2/(2*1) = 1.
уо = 1 - 2 - 3 = -4.
В точке (1; -4) находится минимум функции.
а) промежутки возрастания и убывания функции:
убывает х ∈ (-∞; 1),
возрастает х ∈ (1; +∞).
б) наименьшее значение функции: в точке (1; -4) находится минимум функции уmin = -4.
в) при каких значениях х у > 0.
Для этого надо найти точки пересечения графиком оси Ох
(при этом у тебя 0.)
х²- 2х - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
Функция (то есть у) больше 0 при х ∈ (-∞; -1) ∪ (3; +∞)