По теореме Виета для уравнение четвертой степени получаем соотношение \sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]
Учитывая условия что коэффициенты все выражаются в радикалах , то сумма всех корней выраженные в радикалах есть число радикальное . По третьем равенству первой системы , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
3) Рациональные числа - те числа, которые можно представить в виде периодической десятичной дроби. Т. е. такой дроби, у которой числа после запятой повторяются. 1,(3)=1,333333... В виде периодической дроби можно представить любое целое и дробное число. 2=2,(0). 1/3=0,(3) Но есть числа, которые нельзя представить в виде периодической дроби. У них бесконечное количество цифр после запятой, они не повторяются. Это иррациональные числа. Пример иррациональных чисел: корень из 2, корень из 3, логарифм из 4 по основанию 5, sin 3.
Является.
Объяснение:
Да, любое число является одночленом.
0,7 - одночлен