35 км/ч
Объяснение:
Дано:
S₁ = 35 км
S₂ = 34 км
t = 2 ч
Vр = 1 км/ч
V - ?
1)
Заметим, что собственная скорость лодки равна скорости ее движения по озеру:
V₁ = V
Время, затраченное на движение по озеру:
t₁ = S₁ / V₁
или
t₁ = S₁ / V.
2)
Время, затраченное на движение по реке.
Заметим, что река впадает в озеро, а это значит, что лодка двигалась против течения: V₂ = V - Vp
t₂ = S₂ / V₂ или
t₂ = S₂ / (V - Vp)
3)
Общее время движения:
t = t₁ + t₂
или
t = S₁ / V₁ + S₂ / (V - Vp)
Подставляем данные и решаем уравнение:
2 = 35 / V + 34 / (V - 1)
2·V·(V-1) = 35·(V-1) + 34·V
2·V² - 2·V = 35·V - 35 +34·V
2·V² - 71·V + 35 = 0
Решая это квадратное уравнение, получаем:
V = (71-69)/4 = 0,5 км/ч (слишком маленькая скорость...)
V = (71+69)/4 = 35 км/ч
tg20°*tg40°*tg60°*tg80°=
=tg20°*(tg60-20°)*tg60°*tg(60°+20°)=
= [tg20°*tg(60°-20°)tg(60°+20°)]*tg60°=
=[tg20°*((sin60°-20°)*sin(60°+20°)/(cos(60°-20°)cos(60°+20°))]*√3 =
=[tg20°*(√3/2 *cos20° -1/2 * sin20°)(√3/2 *cos20° +1/2 * sin20°) :
(1/2*cos20°+√3/2 *sin20°)(1/2*cos20°-√3/2 *sin20°)]*√3 =
=[tg20°*(3/4*cos²20°-1/4sin²20°)/(1/4*cos20°-3/4sin20°)]*√3 =
=[(sin20°/cos20°)*(3cos²20°-sin²20°)/(cos²20°-3sin²20°)]*√3=
=[(3cos²20°*sin20°-sin³20°)/(cos³20°-3sin²20°cos20°)]*√3=
=(sin3*20°)/cos(3*20°)*√3= (sin60°)/(cos60°)*√3 = tg60°*√3 =√3*√3=3