1) Дано: 3^(5x-2,5)≤√3, приводим к общему основанию: 3^(5x-2,5)≤3^0,5, т.к. основания одинаковые, работаем только с показателями степени и решаем неравенство: 5x-2,5≤0,5 ⇒ x≤3/5 или x≤0,6
2) Дано: (x²-1)*√(4x+7)≤0
а) Сначала выполняем ОДЗ для подкоренного выражения, которое никогда не бывает меньше нуля: 4x+7≥0 ⇒ x≥-7/4 или x≥-1,75
б) Так как всё неравенство меньше либо равно нулю, то это может быть лишь в том случае, когда x^2-1 либо меньше нуля, либо равно нулю. Зная, что произведение двух чисел равно нулю только когда оба множителя равны нулю, решим второе неравенство:
x²-1≤0, x²≤1 ⇒ x≤ 1 и x ≤ -1
в) Объедением наше решение (x≤ 1 и x ≤ -1) с ОДЗ (x≥-1,75) и получаем, что наш икс лежит в промежутке [-1,75;-1]
ответ: x∈[-1,75;-1]
3) Дано: log_2(x-2)+log_2(x)=0,5log_3(9).
Упростим его до вида: log_2(x-2)+log_2(x)=1 (в правой части получилась единица по свойству логарифмов, показатель 9 можно записать в виде 3² и степень переноситься в множитель логарифма, сокращаясь с 0,5 и в итоге получается log_3(3) либо просто один). Теперь приводим уравнение к общему основанию, логарифмируя единицу:
log_2(x-2)+log_2(x) = log_2(2), log_2(x²-2x) = log_2(2); т.к. в ообоих частях у нас получилось одинаковое основание логарифма 2, то работаем только с выражениями под логарифмом:
x²-2x=2, x²-2x-2=0, решаем как квадратное уравнение по дискриминанту: √D = √(4+8) = √12 = 2√3
Корни данного уравнения: x₁ = 2+√3 и x₂ = 2-√3
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (х; - у) графика у =- f(x) и наоборот. Точки (х; у) и (х; - у) симметричны относительно оси ОХ. Значит, графики у =f(x) и y = -f(x) симметричны относительно оси ОХ.
Пример 1
Построить график функции у = - .
Решение
Строим график функции у = , а затем строим симметрично относительно оси ОХ.
Симметрия относительно оси ОУ (оси ординат)
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (-х; у) графика у = f(-x), и наоборот. Но точки (х; у) и (-х; у) симметричны относительно оси ОУ, значит, графики у = f(x) и у = f(-x) симметричны относительно оси ОУ.
Пример 2
Построить график функции у = .
Решение
Строим график функции у =, а затем строим симметрично относительно оси ОУ.
Пример 3
Построить график функции у = -
Решение
Выполним ряд последовательных преобразований:
строим график функции у = ;
строим симметрично относительно оси ОУ, т. е. получаем график функции у = ;
строим симметрично относительно оси ОХ, т.е. получаем искомый график функции у = -.
Параллельный перенос (сдвиг) вдоль оси абсцисс
Пусть дан график функции у = f(x).
Чтобы построить график функции у = f(x+a), где а – некоторое данное число, достаточно график функции у= f(x) перенести параллельно направлении оси ОХ на расстояние в положительном направлении, если а<0, и в отрицательном направлении, если а>0.
Пример 4.
Построить графики функций у =(х - 3)² и у =(х + 1)².
Решение
Строим график функции у = х² (пунктиром). Переносим его дважды: в положительном направлении оси ОХ на расстояние, равное 3, и получаем график у = (х – 3)²; в отрицательном направлении оси ОХ на расстояние, равное 1, и получаем график у = (х + 1)².
Параллельный перенос (сдвиг) вдоль оси ординат
Пусть дан график функции у =f(x).
Чтобы построить график функции у = f(x) + a, где а – некоторое данное число, достаточно график функции у = f(x) перенести параллельно оси ОУ на расстояние в положительном направлении, если а >0, и в отрицательном, если а /I>0.
Пример 5.
Построить график функции у = 5+.
Решение
Строим график у = (пунктиром). Переносим его в положительном направлении оси ОХ на расстояние, равное 4, и получаем график у =, а затем переносим в положительном направлении оси ОУ на расстояние, равное 5, получаем искомый график у = 5 +.