Решение системы уравнений х₁=1 х₂=3
у₁=1 у₂=7
Объяснение:
Решить систему уравнений:
ху-2у-4х= -5
у-3х= -2
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у= -2+3х
х(-2+3х)-2(-2+3х)-4х= -5
-2х+3х²+4-6х-4х= -5
Приведём подобные члены:
3х²-12х+9=0, квадратное уравнение, ищем корни:
х₁,₂=(12±√144-108)/6
х₁,₂=(12±√36)/6
х₁,₂=(12±6)/6
х₁=6/6
х₁=1
х₂=18/6
х₂=3
у= -2+3х
у₁= -2+3*1
у₁=1
у₂= -2+3*3
у₂=7
Решение системы уравнений х₁=1 х₂=3
у₁=1 у₂=7
Объяснение:
Рассмотрим сначала первое неравенство системы.
Начнем с ОДЗ:
Продолжим решение:
1)
Замена: .
Обратная замена:
С учетом ОДЗ оба корня подходят.
2)
С учетом ОДЗ получим, что решение неравенства:
Теперь перейдем ко второму неравенству системы:
Понятно, что сначала нужно написать ОДЗ.
Продолжим решение:
Заметим, что данное неравенство хорошо раскладывается на множители:
Решим неравенство по методу интервалов.
1)
2)
Введем функции и
. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно,
, верно. Так, мы решили это уравнение, получив, что его корень x=2.
Тогда решение неравенства с учетом ОДЗ:
Итого имеем:
Найдем пересечение:
Задание выполнено!
алалалоекльеььеь