М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
denisgolubev1
denisgolubev1
15.01.2021 12:21 •  Алгебра

3. Даны комплексные числа z =1+2i, z = 1-3i. Найти z1 + z2, z1*z2, \frac{z1}{z2}

👇
Открыть все ответы
Ответ:
даун47
даун47
15.01.2021
Преобразуем левую часть:
sin^{4} x + cos^{4} x = ( sin^{2}x) ^{2} + (cos^{2}x) ^{2} = ( sin^{2}x + cos^{2}x) ^{2} - \\ 2 sin^{2} x cos^{2} x = 1 - 2 sin^{2} x cos^{2} x

Далее:
1 - \frac{1}{2} * 4 sin^{2} x cos^{2}x = 1 - \frac{1}{2} sin^{2} 2x
Таким образом, получаем уравнение:
1 - \frac{1}{2} sin^{2}2x = -\frac{25}{8} + \frac{1}{ sin^{2}2x }
Теперь понятно, что можно ввести замену t = sin^{2}2x и продолжать решение уже дробно-рационального уравнения.

Советую запомнить приём, который я здесь употребил. Он состоит вот в чём.
Мы помним формулу сокращённого умножения:
(x+y)^{2} = x^{2} + 2xy + y^{2}
Отсюда я могу легко выразить сумму квадратов:
x^{2} + y^{2} = (x+y)^{2} - 2xy
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y.
Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его.
Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.

Делаем замену:
t = sin^{2} 2x, 0 \leq t \leq 1
После замены получаем:
1 - \frac{t}{2} = - \frac{25}{8} + \frac{1}{t}
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
8t - 4 t^{2} + 25t - 8 = 0
4 t^{2} - 33t + 8 = 0
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой)
D = 33^{2} - 4 * 4 * 8 = 961 \\ 
 t_{1} = \frac{33 - 31}{8} = \frac{1}{4}; t_{2} = \frac{33 + 31}{8} = 8 \ \textgreater \ 1 - этот корень не удовлетворяет нашему уравнению.
Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
sin^{2} 2x = \frac{1}{4} \\ \frac{1 - cos 4x}{2} = \frac{1}{4}
Отсюда
cos 4x = \frac{1}{2} \\ 4x = +- \frac{ \pi }{3} + 2 \pi n \\ x = +- \frac{ \pi }{12} + \frac{ \pi n}{2}
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
4,7(25 оценок)
Ответ:
fgoolis58
fgoolis58
15.01.2021

В решении.

Объяснение:

Решить уравнения:

1) х² - 10х - 24 = 0

D=b²-4ac = 100 + 96 = 196        √D=14;

х₁=(-b-√D)/2a

х₁=(10-14)/2

х₁= -4/2

х₁= -2;                  

х₂=(-b+√D)/2a  

х₂=(10+14)/2

х₂=24/2

х₂=12;

Проверка путём подстановки  вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.

2) 3х² - 7х + 4 = 0

D=b²-4ac = 49 - 48 = 1        √D=1;

х₁=(-b-√D)/2a

х₁=(7-1)/6

х₁= 6/6

х₁= 1;                  

х₂=(-b+√D)/2a  

х₂=(7+1)/6

х₂=8/6

х₂=4/3;

Проверка путём подстановки  вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.

3) 9у² + 6у + 1 = 0

D=b²-4ac = 36 - 36 = 0        √D=0;

у=(-b±√D)/2a

у=(-6±0)/18

у = -6/18

у = -1/3.

Проверка путём подстановки  вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.

4) 3р² + 2р + 1 = 0

D=b²-4ac = 4 - 12 = -8        

D < 0;

Уравнение не имеет действительных корней.

4,8(5 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ