1) В одной и той же системе координат постройте графики
функций y = x^2, y = x^3 и y = 3x + 2.
а) у = х²;
График - классическая парабола с центром в начале координат, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 9 4 1 0 1 4 9
По вычисленным точкам построить параболу.
б) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
в) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
2) Решите графически уравнение x^3 = 3x + 2.
у = х³; у = 3х + 2;
Построить графики функций и найти координаты точек их пересечения.
а) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
б) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
В решении.
Объяснение:
1) В одной и той же системе координат постройте графики
функций y = x^2, y = x^3 и y = 3x + 2.
а) у = х²;
График - классическая парабола с центром в начале координат, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 9 4 1 0 1 4 9
По вычисленным точкам построить параболу.
б) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
в) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
2) Решите графически уравнение x^3 = 3x + 2.
у = х³; у = 3х + 2;
Построить графики функций и найти координаты точек их пересечения.
а) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
б) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
Координаты точек пересечения: (-1; -1); (2; 8).
Решения уравнения: х = -1; х = 2.