8. На рисунке 1 изображён график функции y = f(x). (a определённой на промежутке [-3,5; 5]. Пользуясь гра- фиком, найдите: 1) f(-2,5); f(-2): f(-0,5); $(0); f(0,5): f(3); 2) значениях, при которых (x) = -2,5; f(x) = 3; f(a) е 1,5; f(x) = 0; 3) область значений функции. Рис. 1 2 П. о
1) А - событие Р(А) - вероятность события p₁=0.9/5=0.18 p₂=0.8/12=0.07 p₃=0.7/8=0.0875 p₁⁻=0.9 p₂⁻=0.8 p₃⁻=0.7 P=p₁*p₁⁻+p₂*p₂⁻+p₃*p₃⁻ P=0.18*0.9+0.07*0.8+0.0875*0.7 P(A)≈0.28 Р_А(В₁) - вероятность события для отличников Р_А(В₂) - для хорошистов Р_А(В₃) - для троечников P_А(B₁)=P(B₁)*P_B₁(A)/P(A)=0.9*0.18/0.28=0.57 P_A(B₂)=0.8*0.07/0.28=0.2 P_A(B₃)=0.7*0.085/0.28≈0.22
2) p=P(A)=0.8 q=P(A⁻)=1-p=1-0.8=0.2 - q - вероятность противоположного события P₁₀₀(20)=C²⁰₁₀₀*0.8²⁰*0.2¹⁹=4.606 P₁₀₀(60)=C⁶⁰₁₀₀*0.8⁶⁰*0.2⁵⁹≈3.195 (4.606+3.195)/2=3.9 Вероятность не менее 20 и не более 60 = 3.9 P₁₀₀(80)=C⁸⁰₁₀₀*0.8⁸⁰*0.2⁷⁹≈2.93 Вероятность 80 раз ≈2.93
=√[(9+√2+4√7)/(4+4√14+14)]=√[(9√2+4√7)/(18+4√14)]=
=√[(9√2+4√7)/√2(9√2+4√7)]=√(1/√2)=
2. (12/(√15-3) - 28/(√15-1) + 1/(2-√3))*(6-√3)=33
1)12(√15+3)/(√15-3)(√15+3)-28(√15+1)/(√15-1)(√15+1)+(2+√3)/(2-√3)(2+√3)=12(√15+3)/(15-9)-28(√15+1)/(15-1)+(2+√3)/(4-3)=2(√15+3)-2(√15+1)+2+√3=2√15+6-2√15-2+2+√3=6+√3
2)(6+√3)(6-√3)=36-3=33
3. √(3-√5) *(√10-√2)*(√5+3)=√[(9-5)(√10-√2)]=√[4(√10-√2)=2
4. (1+ 2√2)/ √(3 + 2√2)=(1+2√2)/√(√2+1)²=(1+2√2)/(√2+1)=
=(1+2√2)(√2-1)/(√2+1)(√2-1)=(√2-2√2+4-1)/(2-1)=3-√2
5. √(11- 4√7) +√(16-6√7)=√(√7-2)²+√(3-√7)²=√7-2+3-√7=1