М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katyusha0
katyusha0
16.05.2022 07:27 •  Алгебра

Знайти цiлi розв'язки нерівності: -4,3<x<1

👇
Открыть все ответы
Ответ:
artemovaelena
artemovaelena
16.05.2022
x^2 - 2a \cdot sin(cosx) + a^2 = 0 \\ \\ &#10;x^2 + a^2 = 2a \cdot sin(cosx) \\ \\ &#10; \dfrac{x^2}{a} + a = 2sinx(cosx)

Пусть a = 0.
Тогда 
x^2 - 2 \cdot 0 \cdot sin(cosx) + 0 = 0 \\ \\ &#10;x^2 = 0 \\ \\ &#10;x = 0

y = \dfrac{x^2}{a} + a \\ \\ &#10;y = 2sin(cosx)
Графиком первой функции является парабола. Вторая функция будет являться чётной:
y(-x) = 2sin(cos(-x) = 2sincosx, значит, y(x) = y(-x). 
Найдём область значений второй функции:
Пусть y = f(x) = 2sin(g(x))
E(g) = [-1; 1]
Тогда E(x) = [2sin(-1); 2sin1]
Чтобы парабола и данная периодическая функция пересекались в одной точке, вершина параболы должна лежать на графике периодической функции. Это будет только тогда, когда значение a будет равно наибольшему значению из области значений периодической функции, т.е.  a = 2sin1.
ответ: при a = 2sin1; 0.  

Решить параметр. при каких значениях а, выражение будет иметь единственное решение
4,7(9 оценок)
Ответ:
alyonasmirnova5
alyonasmirnova5
16.05.2022
Для начала заметим, что в первом уравнении системы обе части строго положительны, поскольку степень положительного числа - всегда число положительное, что мы и видим. Значит, я могу прологарифмировать обе части данного равенства.
Со вторым равенством поступим аналогично. Почему же здесь обе части положительны? Это происходит вследствие того, что x и y всегда положительны(поскольку иначе быть не может из-за того, что они входят под знаком логарифма в первом равенстве). Значит, основания степеней положительны, а потому, и степени положительны. Поэтому имеем право прологарифмировать обе части. Сделаем это. При этом будем использовать свойства логарифмов.

\left \{ {{lg 5^{lg x} = lg 3^{lg y} } \atop {lg (3x)^{lg 3} = lg (5y)^{lg 5} }} \right. \\ \left \{ {{lg 5* lg x = lg 3 * lgy} \atop {lg3 * lg(3x) = lg5 * lg(5y)}} \right.
Напомню, что в процессе мы использовали то, что степень выражения под логарифмом я могу спустить и сделать его множителем.

Теперь введём замену переменных. Пусть lg (3x) = u, lg(5y) = v. Выразим сами логарифмы lg x и lg y через эти переменные. Для этого используем правило логарифма произведения:
lg(3x) = lg3 + lg x, откуда lg x = lg(3x) - lg3 = u - lg3
Аналогично,
lg(5y) = lg5 + lg y, откуда lg y = lg(5y) - lg 5 = v - lg5
Теперь подставляем это в нашу систему:

\left \{ {{lg5*(u - lg3) = lg3*(v - lg5)} \atop {lg3 * u = lg5 * v}} \right.
Теперь решаем эту систему. Она заметно проще предыдущей. Как решаем? Обычным путём выражения одной переменной через другую. Допустим, выразим u через v из второго уравнения и подставим в первое.
u = \frac{v * lg5}{lg3}

Далее производим подстановочку в первое уравнение, которое упрощаем обычными средствами:
lg 5 * ( \frac{vlg5}{lg3} - lg3) = lg3 * (v - lg5) \\ lg5 * \frac{vlg5 - lg^{2}3 }{lg3} = vlg3 - lg3 * lg5 \\ lg5 * (vlg5 - lg^{2}3) = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v lg^{2} 5 - lg^{2}3 * lg5 = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v( lg^{2} 5 - lg^{2} 3) = 0 \\ v = 0

Сразу находим, что и u = 0.
Далее возвращаемся к обычным переменным:
lg(3x) = 0, откуда 3x = 1, x = 1/3 и
lg(5y) = 0, откуда 5y = 1, y = 1/5

Таким образом, решением системы является пара ( \frac{1}{3} , \frac{1}{5} )
4,4(59 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ