Объяснение:
1) 8у - 3(2у - 3) = 7у - 2(5у + 8), 2) 5(2у - 9) + 6у = 4(3у - 2) - 21,
8y - 6y + 9 = 7y - 10y - 16, 10у - 45 + 6у = 12у - 8 - 21,
2y + 9 =-3у - 16, 16у - 45 = 12у - 29,
2у + 3у = -16 - 9, 16у - 12у = -29 + 45,
5y = -25, 4у = 16,
у = -25 : 5, у = 16 : 4,
y = -5; у = 4;
№ 2. 1) 5(3 - 2у) - 4(9 - у) = 3(у + 5),
15 - 10y - 36 + 4y = 3y + 15,
-6y - 21 = 3у + 15,
-6у - 3у = 15 + 21,
-9y = 36,
у = 36 : (-9),
y = -4;
2) 14(2х - 3) - 5(х + 4) = 2(3х + 5) + 5х,
28x - 42 - 5x - 20 = 6x + 10 + 5x,
23х - 62 = 11х + 10,
23x - 11x = 10 + 62,
12x = 72,
х = 72 : 12,
x = 6;
3) 9(3х - 7) + 3(8х - 11) = 3(9х + 8),
27x - 63 + 24x - 33 = 27x + 24,
51x - 96 = 27х + 24,
51х - 27х = 24 + 96,
24x = 120,
х = 120 : 24,
x = 5;
4) 6(7х - 11) - 13(х - 6) = 14(2х + 1),
42x - 66 - 13x + 78 = 28x + 14,
29x + 12 = 28х + 14,
29x - 28 х = 14 - 12,
х = 2;
№ 3. 1) 1,2х + 7 = 2x + 3, (здесь, видимо, пропущен х)
1,2x - 2х = 3 - 7,
-0,8x = -4,
х = -4 : (-0,8),
x = 5;
2) 8,3 - 2,1х = 2(1,5х + 11,8),
8,3 - 2,1х = 3х + 23,6,
-2,1х - 3х = 23,6 - 8,3,
-5,1х = 15,3,
х = 15,3 : (-5,1),
х = -3;
3) 9(13 - 0,8х) + 6,7 = 7,1х - 5,
117 - 7,2х + 6,7 = 7,1х - 5,
-7,2х + 123,7 = 7,1х - 5,
-7,2х - 7,1х = -5 - 123,7,
-14,3х = -128,7,
х = -128,7 : (-14,3),
х = 9.
1)В первом всё довольно просто. Приводим к общему знаменателю, отбрасываем его, считаем корни.
1/x +1/x+3=1/2 Общий знаменатель - 2*x*(x+3)
2x+6+2x=x^2+3x
2x+6+2x-x^2-3x=0
-x^2+x+6=0 - домножим на -1
x^2-x-6=0
D = 1 + 24
x1 = 1 + 5/2 =3
x2 = 1-5/2 = -2
ответ: -2, 3
2)x^4-5x^2+4=0
x^2 примем за y.
y^2-5y+4=0
D= 25-16=9
y1=5+3/2=4
y2=5-3/2=1
Т.к. решением уравнения является корень, то
x1,2=√4=+-2
x3,4=√1=1,-1
ответ: -2; -1; 1; 2
3)x^6-7x^5+6x^4-x^2+7x-6=0
Сгруппируем x с x'aми, 7 с 7-арками и 6 с 6-арками.
x^2(x^4-1)-7x(x^4-1)-6(x^4-1)=0
Сгруппируем ешё раз.
(x^2-7x-6)(x^4-1)=0
Если один из множителей равен 0, то всё произведение равно 0.
x^4-1=0
x^4=1
x1=+-1
x^2-7x-6=0
d=49-24=25
x2=7+5/2=6
x3=7-5/2=1
ответ: -1; 1; 6