100а²-20ab+b²=(10a-b)².
Объяснение:
формула. квадрат разности.
а²-2аб+б²=(а-б)².
34
Объяснение:
пусть первое число 2n
а второе 2n+2
2n(2n+2)≤300
4n²+4n-300≤0 разделим на 4
n²+n-75≤0
решим методом интервалов
n²+n-75=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 1 - 4·1·(-75) = 1 + 300 = 301
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x₁= (-1 - √301)/ 2 ≈ -9.1747
x₂ = ( -1 + √301)/ 2 ≈ 8.1747
по свойству квадратичной функции т.к. старший коэффициент квадратного уравнения равен 1 и 1>0 ветки направлены вверх
тогда решением неравенства будет область между корнями
(x₁)(x₂)>
+ - +
n²+n-75≤0 при х∈[x₁;x₂]
так как нам требуется максимально возможная сумму последовательных четных чисел то выбираем наибольшее положительное четное число из интервала [x₁;x₂] что приближенно равно [-9.1 ;8,1]
это число n=8
тогда 2n=2*8=16 первое число
2n+2=16+2=18 второе число
16*18=288≤300
16+18=34 это максимально возможная сумма последовательных четных чисел, произведение которых не превышает 300
1). R = 12 см
l = 2πR·α / 360°
1. l = 2π·12·36° / 360° = 24π/10 = 2,4π см
2. l = 2π·12·72° / 360° = 4,8π см
3. l = 2π·12·45° / 360° = 3π см
4. l = 2π·12·15° / 360° = π см
2) l = 2πR R = l / (2π)
S = πR² = πl² / (4π²) = l² / (4π)
1. l = 6π см
S = 36π² / (4π) = 9π см
2. l = 4π см
S = 16π² / (4π) = 4π см²
3. l = 10π см
S = 100π² / (4π) = 25π см²
4. l = 8π см
S = 64π² / (4π) = 16π см²
3)
а) R = 12 см,
l = πR·α / 180°
α = l · 180° / (πR)
1. l = 2π см
α = 2π · 180° / (12π) = 30°
2. l = 3π см
α = 3π · 180° / (12π) = 45°
б) R = 10 см,
Sсект = πR²·α / 360°
α = Sсект·360° / (πR²)
1. Sсект = 5π см²
α = 5π·360° / (100π) = 18°
2. Sсект = 10π см²
α = 10π·360° / (100π) = 36°
100а² - 20аb + b² = (10а - b)²