Это уравнение квадратичной функции, графиком которой является парабола, перепишу в стандартном виде y=-4x² - 8x+5, так как а=-4<0 (вообще коэффициенты соответственно равны а=-4, b=-8, c=5, то ветви вниз, и значит действительно у параболы будет наибольшее значение (а вот наименьшего не будет, так как веточки параболы уйдут в бесконечность), координата х вершины параболы определяется по формуле х0=-b/2a=-(-8)/(2*(-4)=8/(-8)=-1, тогда у0=у(х0)=у(-1)=-4*(-1)² -8*(-1)+5=-4+8+5=9 это и есть наибольшее значение функции, ответ номер 1
Найдём производную :
Приравняем производную к нулю:
Возведём обе части в квадрат:
(x² - 6x + 9)(x² - 14x + 58) = (x² - 14x + 49)(x² - 6x + 13)
x⁴ - 14x³ + 58x² - 6x³ + 84x² - 348x + 9x² - 126x + 522 = x⁴ - 6x³ + 13x² - 14x³ + 84x² - 182x + 49x² - 294x + 637
67x² - 474x + 522 = 62x² - 476x + 637
5x² + 2x - 115 = 0
D = (-1)² - 5 * (- 115) = 1 + 575 = 576 = 24²
x₁ = (- 1 + 24)/5 = 4,6
x₂ = (- 1 - 24)/5 = - 5
+ - +
________________________
- 5 4,6
min