Анализируем отмеченные числа. Числа а и b отрицательные, т.е. a<0 и b<0. Причём a<b. Число с положительное, т.е. с>0.
1) a+b>0 - неверно Т.к. числа a и b отрицательные, то их сумма число тоже отрицательное.
2) 1/a>1/b - верно Если для модулей чисел справедливо неравенство |a| > |b|, то у их обратных чисел всё наоборот: 1/|a| < 1/|b|. Но т.к. числа отрицательные, то 1/a > 1/b
3) ac>0 - неверно Перемножаются числа с разными знаками, следовательно, результат отрицательный.
4) 1/b>1/c - неверно Слева число отрицательно, а справа - положительно.
1) х³ + х² - 6 * х = 0
х * (х² + х - 6) = 0
х₁ = 0 х₂ = 2 х₃ = -3
2) (x² - 2x + 3)(x² - 2x + 4) = 6
пусть х² - 2*х + 3 = т. уравнение принимает вид
т * (т + 1) = 6
т² + т - 6 = 0
т₁ = -3 т₂ = 2
1) х² - 2 * х + 3 = 2
х² - 2 * х + 1 = (х - 1)² = 0
х = 1
2) х² - 2 * х + 3 = -3
х²- 2 * х + 6 = 0
корней нет (дискриминант отрицательный)
3) 6*x² + 11*x - 2 = 0 6*x - 1
уравнение 6*x² + 11*x - 2 = 0 имеет 2 корня: х₁ = -2 х₂ = 1/6
второй корень не подходит, так как в этом случае знаменатель равен нулю