Дана функция f(x) = (-1/3)x³ (1/2)x² + 2х - 6.
Находим производную y'(x) = -x² - x + 2.
Определяем критические точки, приравняв производную нулю.
-x² - x + 2 = 0 или x² + x - 2 = 0.
Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;
x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Получили 3 промежутка монотонности функции:
(-∞; -2), (-2; 1) и (1; +∞).
Находим знаки производной y' = -x² - x + 2 на этих промежутках
х = -3 -2 0 1 2
y' = -4 0 2 0 -4.
Там, где производная отрицательна - там функция убывает.
Это промежутки (-∞; -2) и (1; +∞).
Вероятность равна 2*С (2,2)*С (2,0)/C(2,4)=2*1*1/6=1/3 - это используя комбинаторику.
Но можно посчитать и исходя из классического определения вероятности. Каким можно вынуть два шара одного цвета? Либо кк, либо сс. Вероятность вынуть первый красный 2/4=1/2 (красных два шара из четырех) , вероятность вынуть второй красный 1/3 (один красный из оставшихся трех) , вероятность вынуть два красных равна произведению вероятностей этих событий (потому что эти события должны произойти одновременно - вероятность совпадения событий равна произведению вероятностей каждого отдельного события! ) 1/2*1/3=1/6. Вероятность вынуть ДВА СИНИХ точно такая же 1/6 (рассуждения те же, только вместо красных - синие) . А вероятность вынуть два шара одного цвета, то есть либо 2 красных, либо 2 синих, равна сумме вероятностей этих событий (поскольку нам достаточно, чтобы произошло ОДНО из ЭТИХ несовместных, то есть не могущих произойти одновременно, событий!) , то есть 1/6+1/6=2/6=1/3.
ответ от решения, естественно, не изменяется. Потому что оба решения - ПРАВИЛЬНЫЕ!